Now showing 1 - 10 of 85
  • 2006Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","11440"],["dc.bibliographiccitation.issue","31"],["dc.bibliographiccitation.journal","Proceedings of the National Academy of Sciences of the United States of America"],["dc.bibliographiccitation.lastpage","11445"],["dc.bibliographiccitation.volume","103"],["dc.contributor.author","Donnert, Gerald"],["dc.contributor.author","Keller, Jan"],["dc.contributor.author","Medda, Rebecca"],["dc.contributor.author","Andrei, M. Alexandra"],["dc.contributor.author","Rizzoli, Silvio"],["dc.contributor.author","Lührmann, Reinhard"],["dc.contributor.author","Jahn, Reinhard"],["dc.contributor.author","Eggeling, Christian"],["dc.contributor.author","Hell, Stefan"],["dc.date.accessioned","2017-09-07T11:52:39Z"],["dc.date.available","2017-09-07T11:52:39Z"],["dc.date.issued","2006"],["dc.description.abstract","We demonstrate far-field fluorescence microscopy with a focal-plane resolution of 15-20 nm in biological samples. The 10- to 12-fold multilateral increase in resolution below the diffraction barrier has been enabled by the elimination of molecular triplet state excitation as a major source of photobleaching of a number of dyes in stimulated emission depletion microscopy. Allowing for relaxation of the triplet state between subsequent excitation-depletion cycles yields an up to 30-fold increase in total fluorescence signal as compared with reported stimulated emission depletion illumination schemes. Moreover, it enables the reduction of the effective focal spot area by up to approximate to 140-fold below that given by diffraction. Triplet-state relaxation can be realized either by reducing the repetition rate of pulsed lasers or by increasing the scanning speed such that the build-up of the triplet state is effectively prevented. This resolution in immunofluorescence imaging is evidenced by revealing nanoscale protein patterns on endosomes, the punctuated structures of intermediate filaments in neurons, and nuclear protein speckles in mammalian cells with conventional optics. The reported performance of diffraction-unlimited fluorescence microscopy opens up a pathway for addressing fundamental problems in the life sciences."],["dc.identifier.doi","10.1073/pnas.0604965103"],["dc.identifier.gro","3143651"],["dc.identifier.isi","000239616400005"],["dc.identifier.pmid","16864773"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1188"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0027-8424"],["dc.title","Macromolecular-scale resolution in biological fluorescence microscopy"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2014Journal Article
    [["dc.bibliographiccitation.artnumber","5859"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","5"],["dc.contributor.author","Lin, Chao-Chen"],["dc.contributor.author","Seikowski, Jan"],["dc.contributor.author","Perez-Lara, Angel"],["dc.contributor.author","Jahn, Reinhard"],["dc.contributor.author","Höbartner, Claudia"],["dc.contributor.author","Walla, Peter Jomo"],["dc.date.accessioned","2018-11-07T09:31:47Z"],["dc.date.available","2018-11-07T09:31:47Z"],["dc.date.issued","2014"],["dc.description.abstract","Fast synchronous neurotransmitter release is triggered by calcium that activates synaptotagmin-1 (syt-1), resulting in fusion of synaptic vesicles with the presynaptic membrane. Syt-1 possesses two Ca2+-binding C2 domains that tether membranes via interactions with anionic phospholipids. It is capable of crosslinking membranes and has recently been speculated to trigger fusion by decreasing the gap between them. As quantitative information on membrane gaps is key to understanding general cellular mechanisms, including the role of syt-1, we developed a fluorescence-lifetime based inter-membrane distance ruler using membrane-anchored DNAs of various lengths as calibration standards. Wild-type and mutant data provide evidence that full-length syt-1 indeed regulates membrane gaps: without Ca2+, syt-1 maintains membranes at distances of similar to 7-8 nm. Activation with 100 mu M Ca2+ decreases the distance to similar to 5 nm by binding the C2 domains to opposing membranes, respectively. These values reveal that activated syt-1 adjusts membrane distances to the level that promotes SNARE complex assembly."],["dc.identifier.doi","10.1038/ncomms6859"],["dc.identifier.isi","000347683100001"],["dc.identifier.pmid","25500905"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/31610"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.relation.issn","2041-1723"],["dc.title","Control of membrane gaps by synaptotagmin-Ca2+ measured with a novel membrane distance ruler"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2004Journal Article
    [["dc.bibliographiccitation.firstpage","2858"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Proceedings of the National Academy of Sciences"],["dc.bibliographiccitation.lastpage","2863"],["dc.bibliographiccitation.volume","101"],["dc.contributor.author","Schuette, C. G."],["dc.contributor.author","Hatsuzawa, K."],["dc.contributor.author","Margittai, M."],["dc.contributor.author","Stein, A."],["dc.contributor.author","Riedel, D."],["dc.contributor.author","Kuster, P."],["dc.contributor.author","Konig, M."],["dc.contributor.author","Seidel, C."],["dc.contributor.author","Jahn, R."],["dc.date.accessioned","2021-06-01T10:51:03Z"],["dc.date.available","2021-06-01T10:51:03Z"],["dc.date.issued","2004"],["dc.identifier.doi","10.1073/pnas.0400044101"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/86875"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.relation.eissn","1091-6490"],["dc.relation.issn","0027-8424"],["dc.title","Determinants of liposome fusion mediated by synaptic SNARE proteins"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2010Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","606"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Microscopy research and technique"],["dc.bibliographiccitation.lastpage","617"],["dc.bibliographiccitation.volume","73"],["dc.contributor.author","Geumann, Ulf"],["dc.contributor.author","Schaefer, Christina"],["dc.contributor.author","Riedel, Dietmar"],["dc.contributor.author","Jahn, Reinhard"],["dc.contributor.author","Rizzoli, Silvio"],["dc.date.accessioned","2017-09-07T11:46:02Z"],["dc.date.available","2017-09-07T11:46:02Z"],["dc.date.issued","2010"],["dc.description.abstract","In the plasma membrane, membrane proteins are frequently organized in microdomains that are stabilized both by protein-protein and protein-lipid interactions, with the membrane lipid cholesterol being instrumental for microdomain stability. However, it is unclear whether such microdomains persist during endocytotic membrane trafficking. We used stimulated emission-depletion microscopy to investigate the domain structure of the endosomes. We developed a semiautomatic method for counting the individual domains, an approach that we have validated by immunoelectron microscopy. We found that in endosomes derived from neuroendocrine PC12 cells synaptophysin and several SNARE proteins are organized in microdomains. Cholesterol depletion by methyl-beta-cyclodextrin disintegrates most of the domains. Interestingly, no change in the frequency of microdomains was observed when endosomes were fused with protein-free liposomes of similar size (in what constitutes a novel approach in modifying acutely the lipid composition of organelles), regardless of whether the membrane lipid composition of the liposomes was similar or very different from that of the endosomes. Similarly, Rab depletion from the endosome membranes left the domain structure unaffected. Furthermore, labeled exogenous protein, introduced into endosomes by liposome fusion, equilibrated with the corresponding microdomains. We conclude that synaptic membrane proteins are organized in stable but dynamic clusters within endosomes, which are likely to persist during membrane recycling. Microsc. Res. Tech. 73:606-617, 2010. (C) 2009 Wiley-Liss, Inc."],["dc.identifier.doi","10.1002/jemt.20800"],["dc.identifier.gro","3142915"],["dc.identifier.isi","000278641200004"],["dc.identifier.pmid","19937745"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/372"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Wiley-liss"],["dc.relation.issn","1059-910X"],["dc.title","Synaptic Membrane Proteins Form Stable Microdomains in Early Endosomes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2011Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","552"],["dc.bibliographiccitation.issue","7374"],["dc.bibliographiccitation.journal","Nature"],["dc.bibliographiccitation.lastpage","555"],["dc.bibliographiccitation.volume","479"],["dc.contributor.author","van den Bogaart, Geert"],["dc.contributor.author","Meyenberg, Karsten"],["dc.contributor.author","Risselada, H. Jelger"],["dc.contributor.author","Amin, Hayder"],["dc.contributor.author","Willig, Katrin I."],["dc.contributor.author","Hubrich, Barbara E."],["dc.contributor.author","Dier, Markus"],["dc.contributor.author","Hell, Stefan"],["dc.contributor.author","Grubmüller, Helmut"],["dc.contributor.author","Diederichsen, Ulf"],["dc.contributor.author","Jahn, Reinhard"],["dc.date.accessioned","2017-09-07T11:43:16Z"],["dc.date.available","2017-09-07T11:43:16Z"],["dc.date.issued","2011"],["dc.description.abstract","Neuronal exocytosis is catalysed by the SNAP receptor protein syntaxin-1A(1), which is clustered in the plasma membrane at sites where synaptic vesicles undergo exocytosis(2,3). However, how syntaxin-1A is sequestered is unknown. Here we show that syntaxin clustering is mediated by electrostatic interactions with the strongly anionic lipid phosphatidylinositol-4,5-bisphosphate (PIP2). Using super-resolution stimulated-emission depletion microscopy on the plasma membranes of PC12 cells, we found that PIP2 is the dominant inner-leaflet lipid in microdomains about 73 nanometres in size. This high accumulation of PIP2 was required for syntaxin-1A sequestering, as destruction of PIP2 by the phosphatase synaptojanin-1 reduced syntaxin-1A clustering. Furthermore, coreconstitution of PIP2 and the carboxy-terminal part of syntaxin-1A in artificial giant unilamellar vesicles resulted in segregation of PIP2 and syntaxin-1A into distinct domains even when cholesterol was absent. Our results demonstrate that electrostatic protein-lipid interactions can result in the formation of microdomains independently of cholesterol or lipid phases."],["dc.identifier.doi","10.1038/nature10545"],["dc.identifier.gro","3142626"],["dc.identifier.isi","000297285600056"],["dc.identifier.pmid","22020284"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/51"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0028-0836"],["dc.title","Membrane protein sequestering by ionic protein-lipid interactions"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2000Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","726"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","European Journal of Cell Biology"],["dc.bibliographiccitation.lastpage","734"],["dc.bibliographiccitation.volume","79"],["dc.contributor.author","Straub, Martin"],["dc.contributor.author","Lodemann, P."],["dc.contributor.author","Holroyd, P."],["dc.contributor.author","Jahn, Reinhard"],["dc.contributor.author","Hell, Stefan"],["dc.date.accessioned","2017-09-07T11:46:46Z"],["dc.date.available","2017-09-07T11:46:46Z"],["dc.date.issued","2000"],["dc.description.abstract","Multifocal multiphoton microscopy (MMM) permits parallel multiphoton excitation by scanning an array of high numerical aperture foci across a plane in the sample. MMM is particularly suitable for live cell investigations since it combines advantages of standard multiphoton microscopy such as optical sectioning and suppression of out-of-focus phototoxicity with high recording speeds. Here we describe several applications of MMM to live cell imaging using the neuroendocrine cell line PC12 and bovine chromaffin cells. Stainings were performed with the acidophilic dye acridine orange and the lipophilic dyes FM1-43 and Fast DiA as well as by transfection of the cells with GFP. In both bovine chromaffin and PC12 cells structural elements of nuclear chromatin and the 3-D distribution of acidic organelles inside the cells were visualized. In PC12 cells differentiated by nerve growth factor examples of neurites were monitored. Stainings of membranes were used to reconstruct the morphology of cells and neurites in three dimensions by volume-rendering and by isosurface plots. 3-D reconstructions were composed from stacks of about 50 images each with a diameter of 30-100 mu m that were acquired within a few seconds. We conclude that MMM proves to be a technically simple and very effective method for fast 3-D live cell imaging at high resolution."],["dc.identifier.doi","10.1078/0171-9335-00105"],["dc.identifier.gro","3144351"],["dc.identifier.isi","000165291700008"],["dc.identifier.pmid","11089921"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1965"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0171-9335"],["dc.title","Live cell imaging by multifocal multiphoton microscopy"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2015Journal Article
    [["dc.bibliographiccitation.firstpage","815"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Nature Structural & Molecular Biology"],["dc.bibliographiccitation.lastpage","823"],["dc.bibliographiccitation.volume","22"],["dc.contributor.author","Park, Yongsoo"],["dc.contributor.author","Seo, Jong Bae"],["dc.contributor.author","Fraind, Alicia"],["dc.contributor.author","Perez-Lara, Angel"],["dc.contributor.author","Yavuz, Halenur"],["dc.contributor.author","Han, Kyungreem"],["dc.contributor.author","Jung, Seung-Ryoung"],["dc.contributor.author","Kattan, Iman"],["dc.contributor.author","Walla, Peter Jomo"],["dc.contributor.author","Choi, MooYoung"],["dc.contributor.author","Cafiso, David S."],["dc.contributor.author","Koh, Duk-Su"],["dc.contributor.author","Jahn, Reinhard"],["dc.date.accessioned","2019-12-03T15:11:07Z"],["dc.date.available","2019-12-03T15:11:07Z"],["dc.date.issued","2015"],["dc.description.abstract","The Ca(2+) sensor synaptotagmin-1 is thought to trigger membrane fusion by binding to acidic membrane lipids and SNARE proteins. Previous work has shown that binding is mediated by electrostatic interactions that are sensitive to the ionic environment. However, the influence of divalent or polyvalent ions, at physiological concentrations, on synaptotagmin's binding to membranes or SNAREs has not been explored. Here we show that binding of rat synaptotagmin-1 to membranes containing phosphatidylinositol 4,5-bisphosphate (PIP2) is regulated by charge shielding caused by the presence of divalent cations. Surprisingly, polyvalent ions such as ATP and Mg(2+) completely abrogate synaptotagmin-1 binding to SNAREs regardless of the presence of Ca(2+). Altogether, our data indicate that at physiological ion concentrations Ca(2+)-dependent synaptotagmin-1 binding is confined to PIP2-containing membrane patches in the plasma membrane, suggesting that membrane interaction of synaptotagmin-1 rather than SNARE binding triggers exocytosis of vesicles."],["dc.identifier.doi","10.1038/nsmb.3097"],["dc.identifier.pmid","26389740"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/62732"],["dc.language.iso","en"],["dc.relation.eissn","1545-9985"],["dc.relation.issn","1545-9993"],["dc.relation.issn","1545-9985"],["dc.title","Synaptotagmin-1 binds to PIP(2)-containing membrane but not to SNAREs at physiological ionic strength"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2011Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","805"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","Nature Structural & Molecular Biology"],["dc.bibliographiccitation.lastpage","U82"],["dc.bibliographiccitation.volume","18"],["dc.contributor.author","van den Bogaart, Geert"],["dc.contributor.author","Thutupalli, Shashi"],["dc.contributor.author","Risselada, J. H."],["dc.contributor.author","Meyenberg, Karsten"],["dc.contributor.author","Holt, Matthew"],["dc.contributor.author","Riedel, Dietmar"],["dc.contributor.author","Diederichsen, Ulf"],["dc.contributor.author","Herminghaus, Stephan"],["dc.contributor.author","Grubmüller, Helmut"],["dc.contributor.author","Jahn, Reinhard"],["dc.date.accessioned","2017-09-07T11:44:10Z"],["dc.date.available","2017-09-07T11:44:10Z"],["dc.date.issued","2011"],["dc.description.abstract","Synaptotagmin-1 triggers Ca2+-sensitive, rapid neurotransmitter release by promoting interactions between SNARE proteins on synaptic vesicles and the plasma membrane. How synaptotagmin-1 promotes this interaction is unclear, and the massive increase in membrane fusion efficiency of Ca2+-bound synaptotagmin-1 has not been reproduced in vitro. However, previous experiments have been performed at relatively high salt concentrations, screening potentially important electrostatic interactions. Using functional reconstitution in liposomes, we show here that at low ionic strength SNARE-mediated membrane fusion becomes strictly dependent on both Ca2+ and synaptotagmin-1. Under these conditions, synaptotagmin-1 functions as a distance regulator that tethers the liposomes too far from the plasma membrane for SNARE nucleation in the absence of Ca2+, but while bringing the liposomes close enough for membrane fusion in the presence of Ca2+. These results may explain how the relatively weak electrostatic interactions between synaptotagmin-1 and membranes substantially accelerate fusion."],["dc.identifier.doi","10.1038/nsmb.2061"],["dc.identifier.gro","3142704"],["dc.identifier.isi","000292507500009"],["dc.identifier.pmid","21642968"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/138"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1545-9993"],["dc.title","Synaptotagmin-1 may be a distance regulator acting upstream of SNARE nucleation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2018Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","566"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Biochimica et Biophysica Acta (BBA) - Biomembranes"],["dc.bibliographiccitation.lastpage","578"],["dc.bibliographiccitation.volume","1860"],["dc.contributor.author","Xu, Yihui"],["dc.contributor.author","Kuhlmann, Jan"],["dc.contributor.author","Brennich, Martha"],["dc.contributor.author","Komorowski, Karlo"],["dc.contributor.author","Jahn, Reinhard"],["dc.contributor.author","Steinem, Claudia"],["dc.contributor.author","Salditt, Tim"],["dc.date.accessioned","2018-01-17T13:00:13Z"],["dc.date.available","2018-01-17T13:00:13Z"],["dc.date.issued","2018"],["dc.description.abstract","SNAREs are known as an important family of proteins mediating vesicle fusion. For various biophysical studies, they have been reconstituted into supported single bilayers via proteoliposome adsorption and rupture. In this study we extended this method to the reconstitution of SNAREs into supported multilamellar lipid membranes, i.e. oriented multibilayer stacks, as an ideal model system for X-ray structure analysis (X-ray reflectivity and diffraction). The reconstitution was implemented through a pathway of proteomicelle, proteoliposome and multibilayer. To monitor the structural evolution in each step, we used small-angle X-ray scattering for the proteomicelles and proteoliposomes, followed by X-ray reflectivity and grazing-incidence small-angle scattering for the multibilayers. Results show that SNAREs can be successfully reconstituted into supported multibilayers, with high enough orientational alignment for the application of surface sensitive X-ray characterizations. Based on this protocol, we then investigated the effect of SNAREs on the structure and phase diagram of the lipid membranes. Beyond this application, this reconstitution protocol could also be useful for X-ray analysis of many further membrane proteins."],["dc.identifier.doi","10.1016/j.bbamem.2017.10.023"],["dc.identifier.pmid","29106973"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11697"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.subject.gro","x-ray scattering"],["dc.subject.gro","membrane biophysics"],["dc.title","Reconstitution of SNARE proteins into solid-supported lipid bilayer stacks and X-ray structure analysis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 1989Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","9619"],["dc.bibliographiccitation.issue","16"],["dc.bibliographiccitation.journal","Journal of biological chemistry"],["dc.bibliographiccitation.lastpage","9625"],["dc.bibliographiccitation.volume","264"],["dc.contributor.author","Brose, Nils"],["dc.contributor.author","Halpain, S."],["dc.contributor.author","Suchanek, C."],["dc.contributor.author","Jahn, Reinhard"],["dc.date.accessioned","2017-09-07T11:51:56Z"],["dc.date.available","2017-09-07T11:51:56Z"],["dc.date.issued","1989"],["dc.identifier.gro","3144836"],["dc.identifier.isi","A1989U866500081"],["dc.identifier.pmid","2566612"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2504"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Amer Soc Biochemistry Molecular Biology Inc"],["dc.relation.issn","0021-9258"],["dc.title","Characterization and partial purification of a chloride- and calcium-dependent glutamate-binding protein from rat brain."],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details PMID PMC WOS