Options
Lehrenfeld, Christoph
Loading...
Preferred name
Lehrenfeld, Christoph
Official Name
Lehrenfeld, Christoph
Alternative Name
Lehrenfeld, C.
Main Affiliation
ORCID
Now showing 1 - 1 of 1
2022Preprint [["dc.contributor.author","Alemán, Tilman"],["dc.contributor.author","Halla, Martin"],["dc.contributor.author","Stocker, Paul"],["dc.contributor.author","Lehrenfeld, Christoph"],["dc.contributor.orcid","0000-0003-0170-8468"],["dc.creator.author","Christoph Lehrenfeld"],["dc.creator.author","Tilman Alemán"],["dc.creator.author","Martin Halla"],["dc.creator.author","Christoph Lehrenfeld"],["dc.creator.author","Paul Stocker"],["dc.date.accessioned","2022-11-07T10:56:43Z"],["dc.date.available","2022-11-07T10:56:43Z"],["dc.date.issued","2022"],["dc.description.abstract","Driven by the challenging task of finding robust discretization methods for Galbrun's equation, we investigate conditions for stability and different aspects of robustness for different finite element schemes on a simplified version of the equations. The considered PDE is a second order indefinite vector-PDE which remains if only the highest order terms of Galbrun's equation are taken into account. A key property for stability is a Helmholtz-type decomposition which results in a strong connection between stable discretizations for Galbrun's equation and Stokes and nearly incompressible linear elasticity problems."],["dc.identifier.doi","10.48550/ARXIV.2205.15650"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/116971"],["dc.identifier.url","https://arxiv.org/abs/2205.15650"],["dc.language.iso","en"],["dc.publisher","arXiv"],["dc.relation","SFB 1456 | Cluster C | C04: Correlations of solar oscillations: modeling and inversions"],["dc.relation","SFB 1456 | Cluster C: Data with Information in Their Dependency Structure"],["dc.relation","SFB 1456: Mathematik des Experiments: Die Herausforderung indirekter Messungen in den Naturwissenschaften"],["dc.relation.orgunit","Institut für Numerische und Angewandte Mathematik"],["dc.relation.workinggroup","RG Lehrenfeld (Computational PDEs)"],["dc.subject.gro","Galbrun's equation"],["dc.subject.gro","Helmholtz decomposition"],["dc.subject.gro","Numerics of PDEs"],["dc.title","Robust finite element discretizations for a simplified Galbrun's equation"],["dc.type","preprint"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI