Now showing 1 - 2 of 2
  • 2022Preprint
    [["dc.contributor.author","Alemán, Tilman"],["dc.contributor.author","Halla, Martin"],["dc.contributor.author","Stocker, Paul"],["dc.contributor.author","Lehrenfeld, Christoph"],["dc.contributor.orcid","0000-0003-0170-8468"],["dc.creator.author","Christoph Lehrenfeld"],["dc.creator.author","Tilman Alemán"],["dc.creator.author","Martin Halla"],["dc.creator.author","Christoph Lehrenfeld"],["dc.creator.author","Paul Stocker"],["dc.date.accessioned","2022-11-07T10:56:43Z"],["dc.date.available","2022-11-07T10:56:43Z"],["dc.date.issued","2022"],["dc.description.abstract","Driven by the challenging task of finding robust discretization methods for Galbrun's equation, we investigate conditions for stability and different aspects of robustness for different finite element schemes on a simplified version of the equations. The considered PDE is a second order indefinite vector-PDE which remains if only the highest order terms of Galbrun's equation are taken into account. A key property for stability is a Helmholtz-type decomposition which results in a strong connection between stable discretizations for Galbrun's equation and Stokes and nearly incompressible linear elasticity problems."],["dc.identifier.doi","10.48550/ARXIV.2205.15650"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/116971"],["dc.identifier.url","https://arxiv.org/abs/2205.15650"],["dc.language.iso","en"],["dc.publisher","arXiv"],["dc.relation","SFB 1456 | Cluster C | C04: Correlations of solar oscillations: modeling and inversions"],["dc.relation","SFB 1456 | Cluster C: Data with Information in Their Dependency Structure"],["dc.relation","SFB 1456: Mathematik des Experiments: Die Herausforderung indirekter Messungen in den Naturwissenschaften"],["dc.relation.orgunit","Institut für Numerische und Angewandte Mathematik"],["dc.relation.workinggroup","RG Lehrenfeld (Computational PDEs)"],["dc.subject.gro","Galbrun's equation"],["dc.subject.gro","Helmholtz decomposition"],["dc.subject.gro","Numerics of PDEs"],["dc.title","Robust finite element discretizations for a simplified Galbrun's equation"],["dc.type","preprint"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2010-05-13Thesis Master Thesis
    [["dc.contributor.advisorcorporation","RWTH Aachen"],["dc.contributor.author","Lehrenfeld, Christoph"],["dc.date.accessioned","2020-03-02T16:27:35Z"],["dc.date.available","2020-03-02T16:27:35Z"],["dc.date.issued","2010-05-13"],["dc.description.abstract","This thesis deals with a higher order discretization of incompressible flow problems using the Hybrid Discontinuous Galerkin Method. It aims to introduce an appropriate and computationally efficient Hybrid Discontinous Galerkin formulation for the most important model problems of incompressible fluid flow, namely the convection diffusion equation and the incompressible Navier-Stokes equations."],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/63057"],["dc.language.iso","en"],["dc.rights","CC BY 1.0"],["dc.subject.gro","Numerics of PDEs"],["dc.subject.gro","Hybrid Discontinuous Galerkin"],["dc.subject.gro","incompressible flows"],["dc.subject.gro","compatible discretizations"],["dc.title","Hybrid Discontinuous Galerkin Methods for Incompressible Flow Problems"],["dc.type","thesis"],["dc.type.internalPublication","no"],["dc.type.subtype","master"],["dspace.entity.type","Publication"]]
    Details