Now showing 1 - 10 of 13
  • 2019Journal Article Editorial Contribution (Editorial, Introduction, Epilogue)
    [["dc.bibliographiccitation.artnumber","54"],["dc.bibliographiccitation.journal","Frontiers in Cell and Developmental Biology"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Raimundo, Nuno"],["dc.contributor.author","Krisko, Anita"],["dc.date.accessioned","2019-07-09T11:51:27Z"],["dc.date.available","2019-07-09T11:51:27Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.3389/fcell.2019.00054"],["dc.identifier.pmid","31032256"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16125"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59946"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.publisher","Frontiers Media S.A."],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/337327/EU//MITOPEXLYSONETWORK"],["dc.relation.eissn","2296-634X"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","610"],["dc.title","Editorial: Mitochondrial Communication in Physiology, Disease and Aging"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","editorial_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2020Journal Article Research Paper
    [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Sathyanarayanan, Udhayabhaskar"],["dc.contributor.author","Musa, Marina"],["dc.contributor.author","Bou Dib, Peter"],["dc.contributor.author","Raimundo, Nuno"],["dc.contributor.author","Milosevic, Ira"],["dc.contributor.author","Krisko, Anita"],["dc.date.accessioned","2021-04-14T08:31:49Z"],["dc.date.available","2021-04-14T08:31:49Z"],["dc.date.issued","2020"],["dc.description.sponsorship","Open-Access-Publikationsfonds 2021"],["dc.identifier.doi","10.1038/s41467-020-19104-1"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/83720"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation.eissn","2041-1723"],["dc.relation.orgunit","Abteilung Experimentelle Neurodegeneration"],["dc.rights","CC BY 4.0"],["dc.title","ATP hydrolysis by yeast Hsp104 determines protein aggregate dissolution and size in vivo"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2017Journal Article
    [["dc.bibliographiccitation.artnumber","45076"],["dc.bibliographiccitation.journal","Scientific Reports"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Fernandez-Mosquera, Lorena"],["dc.contributor.author","Diogo, Catia V."],["dc.contributor.author","Yambire, King Faisal"],["dc.contributor.author","Santos, Gabriela L."],["dc.contributor.author","Luna Sanchez, Marta"],["dc.contributor.author","Benit, Paule"],["dc.contributor.author","Rustin, Pierre"],["dc.contributor.author","Carlos Lopez, Luis"],["dc.contributor.author","Milosevic, Ira"],["dc.contributor.author","Raimundo, Nuno"],["dc.date.accessioned","2018-11-07T10:26:02Z"],["dc.date.available","2018-11-07T10:26:02Z"],["dc.date.issued","2017"],["dc.description.abstract","Mitochondria are key cellular signaling platforms, affecting fundamental processes such as cell proliferation, differentiation and death. However, it remains unclear how mitochondrial signaling affects other organelles, particularly lysosomes. Here, we demonstrate that mitochondrial respiratory chain (RC) impairments elicit a stress signaling pathway that regulates lysosomal biogenesis via the microphtalmia transcription factor family. Interestingly, the effect of mitochondrial stress over lysosomal biogenesis depends on the timeframe of the stress elicited: while RC inhibition with rotenone or uncoupling with CCCP initially triggers lysosomal biogenesis, the effect peaks after few hours and returns to baseline. Long-term RC inhibition by long-term treatment with rotenone, or patient mutations in fibroblasts and in a mouse model result in repression of lysosomal biogenesis. The induction of lysosomal biogenesis by short-term mitochondrial stress is dependent on TFEB and MITF, requires AMPK signaling and is independent of calcineurin signaling. These results reveal an integrated view of how mitochondrial signaling affects lysosomes, which is essential to fully comprehend the consequences of mitochondrial malfunction, particularly in the context of mitochondrial diseases."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2017"],["dc.identifier.doi","10.1038/srep45076"],["dc.identifier.isi","000397760800001"],["dc.identifier.pmid","28345620"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14396"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/42963"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Nature Publishing Group"],["dc.relation.issn","2045-2322"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Acute and chronic mitochondrial respiratory chain deficiency differentially regulate lysosomal biogenesis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2019Journal Article Research Paper
    [["dc.bibliographiccitation.journal","eLife"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Yambire, King Faisal"],["dc.contributor.author","Rostosky, Christine"],["dc.contributor.author","Watanabe, Takashi"],["dc.contributor.author","Pacheu-Grau, David"],["dc.contributor.author","Torres-Odio, Sylvia"],["dc.contributor.author","Sanchez-Guerrero, Angela"],["dc.contributor.author","Senderovich, Ola"],["dc.contributor.author","Meyron-Holtz, Esther G"],["dc.contributor.author","Milosevic, Ira"],["dc.contributor.author","Frahm, Jens"],["dc.contributor.author","West, A Phillip"],["dc.contributor.author","Raimundo, Nuno"],["dc.date.accessioned","2020-12-10T18:48:09Z"],["dc.date.available","2020-12-10T18:48:09Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.7554/eLife.51031"],["dc.identifier.pmid","31793879"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/17114"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/79035"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/104"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.intern","Merged from goescholar"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P02: Charakterisierung der ER-Mitochondrien-Kontakte und ihre Rolle in der Signalweiterleitung"],["dc.relation.workinggroup","RG Milosevic (Synaptic Vesicle Dynamics)"],["dc.relation.workinggroup","RG Raimundo"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Impaired lysosomal acidification triggers iron deficiency and inflammation in vivo"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2018Journal Article Overview
    [["dc.bibliographiccitation.firstpage","87"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Biochemical and Biophysical Research Communications"],["dc.bibliographiccitation.lastpage","93"],["dc.bibliographiccitation.volume","500"],["dc.contributor.author","Diogo, Cátia V."],["dc.contributor.author","Yambire, King Faisal"],["dc.contributor.author","Fernández Mosquera, Lorena"],["dc.contributor.author","Branco F., Tiago"],["dc.contributor.author","Raimundo, Nuno"],["dc.date.accessioned","2020-12-10T14:22:35Z"],["dc.date.available","2020-12-10T14:22:35Z"],["dc.date.issued","2018"],["dc.description.abstract","Mitochondria are constantly communicating with the rest of the cell. Defects in mitochondria underlie severe pathologies, whose mechanisms remain poorly understood. It is becoming increasingly evident that mitochondrial malfunction resonates in other organelles, perturbing their function and their biogenesis. In this manuscript, we review the current knowledge on the cross-talk between mitochondria and other organelles, particularly lysosomes, peroxisomes and the endoplasmic reticulum. Several organelle interactions are mediated by transcriptional programs, and other signaling mechanisms are likely mediating organelle dysfunction downstream of mitochondrial impairments. Many of these organelle crosstalk pathways are likely to have a role in pathological processes."],["dc.identifier.doi","10.1016/j.bbrc.2017.04.124"],["dc.identifier.pmid","28456629"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/71662"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/23"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P02: Charakterisierung der ER-Mitochondrien-Kontakte und ihre Rolle in der Signalweiterleitung"],["dc.relation.workinggroup","RG Raimundo"],["dc.rights","CC BY-NC-ND 4.0"],["dc.title","Mitochondrial adventures at the organelle society"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","overview_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2020Journal Article Overview
    [["dc.bibliographiccitation.firstpage","71"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Trends in Molecular Medicine"],["dc.bibliographiccitation.lastpage","88"],["dc.bibliographiccitation.volume","26"],["dc.contributor.author","Deus, Cláudia M."],["dc.contributor.author","Yambire, King Faisal"],["dc.contributor.author","Oliveira, Paulo J."],["dc.contributor.author","Raimundo, Nuno"],["dc.date.accessioned","2020-12-10T15:20:23Z"],["dc.date.available","2020-12-10T15:20:23Z"],["dc.date.issued","2020"],["dc.description.abstract","Cellular function requires coordination between different organelles and metabolic cues. Mitochondria and lysosomes are essential for cellular metabolism as major contributors of chemical energy and building blocks. It is therefore pivotal for cellular function to coordinate the metabolic roles of mitochondria and lysosomes. However, these organelles do more than metabolism, given their function as fundamental signaling platforms in the cell that regulate many key processes such as autophagy, proliferation, and cell death. Mechanisms of crosstalk between mitochondria and lysosomes are discussed, both under physiological conditions and in diseases that affect these organelles."],["dc.identifier.doi","10.1016/j.molmed.2019.10.009"],["dc.identifier.pmid","31791731"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/72652"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/100"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P02: Charakterisierung der ER-Mitochondrien-Kontakte und ihre Rolle in der Signalweiterleitung"],["dc.relation.workinggroup","RG Raimundo"],["dc.rights","CC BY-NC-ND 4.0"],["dc.title","Mitochondria–Lysosome Crosstalk: From Physiology to Neurodegeneration"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","overview_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2017Journal Article
    [["dc.bibliographiccitation.firstpage","994"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Aging Cell"],["dc.bibliographiccitation.lastpage","1005"],["dc.bibliographiccitation.volume","16"],["dc.contributor.author","Perić, Matea"],["dc.contributor.author","Lovrić, Anita"],["dc.contributor.author","Šarić, Ana"],["dc.contributor.author","Musa, Marina"],["dc.contributor.author","Bou Dib, Peter"],["dc.contributor.author","Rudan, Marina"],["dc.contributor.author","Nikolić, Andrea"],["dc.contributor.author","Sobočanec, Sandra"],["dc.contributor.author","Mikecin, Ana-Matea"],["dc.contributor.author","Dennerlein, Sven"],["dc.contributor.author","Milošević, Ira"],["dc.contributor.author","Vlahoviček, Kristian"],["dc.contributor.author","Raimundo, Nuno"],["dc.contributor.author","Kriško, Anita"],["dc.date.accessioned","2019-07-09T11:44:59Z"],["dc.date.available","2019-07-09T11:44:59Z"],["dc.date.issued","2017"],["dc.description.abstract","Protein quality control mechanisms, required for normal cellular functioning, encompass multiple functions related to protein production and maintenance. However, the existence of communication between proteostasis and metabolic networks and its underlying mechanisms remain elusive. Here, we report that enhanced chaperone activity and consequent improved proteostasis are sensed by TORC1 via the activity of Hsp82. Chaperone enrichment decreases the level of Hsp82, which deactivates TORC1 and leads to activation of Snf1/AMPK, regardless of glucose availability. This mechanism culminates in the extension of yeast replicative lifespan (RLS) that is fully reliant on both TORC1 deactivation and Snf1/AMPK activation. Specifically, we identify oxygen consumption increase as the downstream effect of Snf1 activation responsible for the entire RLS extension. Our results set a novel paradigm for the role of proteostasis in aging: modulation of the misfolded protein level can affect cellular metabolic features as well as mitochondrial activity and consequently modify lifespan. The described mechanism is expected to open new avenues for research of aging and age-related diseases."],["dc.identifier.doi","10.1111/acel.12623"],["dc.identifier.pmid","28613034"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14988"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59133"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","315997"],["dc.relation","316289"],["dc.relation","337327"],["dc.relation.issn","1474-9726"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","612"],["dc.title","TORC1-mediated sensing of chaperone activity alters glucose metabolism and extends lifespan."],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2019Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","e39598"],["dc.bibliographiccitation.journal","eLife"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Yambire, King Faisal"],["dc.contributor.author","Fernandez-Mosquera, Lorena"],["dc.contributor.author","Steinfeld, Robert"],["dc.contributor.author","Mühle, Christiane"],["dc.contributor.author","Ikonen, Elina"],["dc.contributor.author","Raimundo, Nuno"],["dc.contributor.author","Milošević, Ira"],["dc.date.accessioned","2020-12-10T18:48:06Z"],["dc.date.available","2020-12-10T18:48:06Z"],["dc.date.issued","2019"],["dc.description.abstract","Perturbations in mitochondrial function and homeostasis are pervasive in lysosomal storage diseases, but the underlying mechanisms remain unknown. Here, we report a transcriptional program that represses mitochondrial biogenesis and function in lysosomal storage diseases Niemann-Pick type C (NPC) and acid sphingomyelinase deficiency (ASM), in patient cells and mouse tissues. This mechanism is mediated by the transcription factors KLF2 and ETV1, which are both induced in NPC and ASM patient cells. Mitochondrial biogenesis and function defects in these cells are rescued by the silencing of KLF2 or ETV1. Increased ETV1 expression is regulated by KLF2, while the increase of KLF2 protein levels in NPC and ASM stems from impaired signaling downstream sphingosine-1-phosphate receptor 1 (S1PR1), which normally represses KLF2. In patient cells, S1PR1 is barely detectable at the plasma membrane and thus unable to repress KLF2. This manuscript provides a mechanistic pathway for the prevalent mitochondrial defects in lysosomal storage diseases."],["dc.identifier.doi","10.7554/eLife.39598"],["dc.identifier.pmid","30775969"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15862"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/79020"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/58"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.intern","Merged from goescholar"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P02: Charakterisierung der ER-Mitochondrien-Kontakte und ihre Rolle in der Signalweiterleitung"],["dc.relation.eissn","2050-084X"],["dc.relation.issn","2050-084X"],["dc.relation.workinggroup","RG Milosevic (Synaptic Vesicle Dynamics)"],["dc.relation.workinggroup","RG Raimundo"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Mitochondrial biogenesis is transcriptionally repressed in lysosomal lipid storage diseases"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2020Journal Article Overview
    [["dc.bibliographiccitation.artnumber","1266"],["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.lastpage","18"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Gowrisankaran, Sindhuja"],["dc.contributor.author","Houy, Sébastien"],["dc.contributor.author","del Castillo, Johanna G. Peña"],["dc.contributor.author","Steubler, Vicky"],["dc.contributor.author","Gelker, Monika"],["dc.contributor.author","Kroll, Jana"],["dc.contributor.author","Pinheiro, Paulo S."],["dc.contributor.author","Schwitters, Dirk"],["dc.contributor.author","Halbsgut, Nils"],["dc.contributor.author","Pechstein, Arndt"],["dc.contributor.author","van Weering, Jan R. T."],["dc.contributor.author","Maritzen, Tanja"],["dc.contributor.author","Haucke, Volker"],["dc.contributor.author","Raimundo, Nuno"],["dc.contributor.author","Sørensen, Jakob B."],["dc.contributor.author","Milosevic, Ira"],["dc.date.accessioned","2020-05-22T11:43:11Z"],["dc.date.accessioned","2021-10-27T13:22:12Z"],["dc.date.available","2020-05-22T11:43:11Z"],["dc.date.available","2021-10-27T13:22:12Z"],["dc.date.issued","2020"],["dc.description.abstract","Endophilins-A are conserved endocytic adaptors with membrane curvature-sensing and -inducing properties. We show here that, independently of their role in endocytosis, endophilin-A1 and endophilin-A2 regulate exocytosis of neurosecretory vesicles. The number and distribution of neurosecretory vesicles were not changed in chromaffin cells lacking endophilin-A, yet fast capacitance and amperometry measurements revealed reduced exocytosis, smaller vesicle pools and altered fusion kinetics. The levels and distributions of the main exocytic and endocytic factors were unchanged, and slow compensatory endocytosis was not robustly affected. Endophilin-A’s role in exocytosis is mediated through its SH3-domain, specifically via a direct interaction with intersectin-1, a coordinator of exocytic and endocytic traffic. Endophilin-A not able to bind intersectin-1, and intersectin-1 not able to bind endophilin-A, resulted in similar exocytic defects in chromaffin cells. Altogether, we report that two endocytic proteins, endophilin-A and intersectin-1, are enriched on neurosecretory vesicles and regulate exocytosis by coordinating neurosecretory vesicle priming and fusion."],["dc.identifier.doi","10.1038/s41467-020-14993-8"],["dc.identifier.pmid","30129015"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/17335"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/92074"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/37"],["dc.language.iso","en"],["dc.notes.intern","Migrated from goescholar"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P02: Charakterisierung der ER-Mitochondrien-Kontakte und ihre Rolle in der Signalweiterleitung"],["dc.relation.eissn","2041-1723"],["dc.relation.orgunit","Universitätsmedizin Göttingen"],["dc.relation.workinggroup","RG Milosevic (Synaptic Vesicle Dynamics)"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject.ddc","612"],["dc.title","Endophilin-A coordinates priming and fusion of neurosecretory vesicles via intersectin"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","overview_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2019Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.issue","27"],["dc.bibliographiccitation.journal","Autophagy"],["dc.bibliographiccitation.lastpage","20"],["dc.contributor.author","Fernandez-Mosquera, Lorena"],["dc.contributor.author","Yambire, King Faisal"],["dc.contributor.author","Couto, Renata"],["dc.contributor.author","Pereyra, Leonardo"],["dc.contributor.author","Pabis, Kamil"],["dc.contributor.author","Ponsford, Amy H."],["dc.contributor.author","Diogo, Cátia V."],["dc.contributor.author","Stagi, Massimiliano"],["dc.contributor.author","Milošević, Ira"],["dc.contributor.author","Raimundo, Nuno"],["dc.date.accessioned","2019-07-09T11:51:24Z"],["dc.date.available","2019-07-09T11:51:24Z"],["dc.date.issued","2019"],["dc.description.abstract","Mitochondria are key organelles for cellular metabolism, and regulate several processes including cell death and macroautophagy/autophagy. Here, we show that mitochondrial respiratory chain (RC) deficiency deactivates AMP-activated protein kinase (AMPK, a key regulator of energy homeostasis) signaling in tissue and in cultured cells. The deactivation of AMPK in RC-deficiency is due to increased expression of the AMPK-inhibiting protein FLCN (folliculin). AMPK is found to be necessary for basal lysosomal function, and AMPK deactivation in RC-deficiency inhibits lysosomal function by decreasing the activity of the lysosomal Ca2+ channel MCOLN1 (mucolipin 1). MCOLN1 is regulated by phosphoinositide kinase PIKFYVE and its product PtdIns(3,5)P2, which is also decreased in RC-deficiency. Notably, reactivation of AMPK, in a PIKFYVE-dependent manner, or of MCOLN1 in RC-deficient cells, restores lysosomal hydrolytic capacity. Building on these data and the literature, we propose that downregulation of the AMPK-PIKFYVE-PtdIns(3,5)P2-MCOLN1 pathway causes lysosomal Ca2+ accumulation and impaired lysosomal catabolism. Besides unveiling a novel role of AMPK in lysosomal function, this study points to the mechanism that links mitochondrial malfunction to impaired lysosomal catabolism, underscoring the importance of AMPK and the complexity of organelle cross-talk in the regulation of cellular homeostasis. Abbreviation: ΔΨm: mitochondrial transmembrane potential; AMP: adenosine monophosphate; AMPK: AMP-activated protein kinase; ATG5: autophagy related 5; ATP: adenosine triphosphate; ATP6V0A1: ATPase, H+ transporting, lysosomal, V0 subbunit A1; ATP6V1A: ATPase, H+ transporting, lysosomal, V0 subbunit A; BSA: bovine serum albumin; CCCP: carbonyl cyanide-m-chlorophenylhydrazone; CREB1: cAMP response element binding protein 1; CTSD: cathepsin D; CTSF: cathepsin F; DMEM: Dulbecco's modified Eagle's medium; DMSO: dimethyl sulfoxide; EBSS: Earl's balanced salt solution; ER: endoplasmic reticulum; FBS: fetal bovine serum; FCCP: carbonyl cyanide-p-trifluoromethoxyphenolhydrazone; GFP: green fluorescent protein; GPN: glycyl-L-phenylalanine 2-naphthylamide; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MCOLN1/TRPML1: mucolipin 1; MEF: mouse embryonic fibroblast; MITF: melanocyte inducing transcription factor; ML1N 2-GFP: probe used to detect PtdIns(3,5)P2 based on the transmembrane domain of MCOLN1; MTORC1: mechanistic target of rapamycin kinase complex 1; NDUFS4: NADH:ubiquinone oxidoreductase subunit S4; OCR: oxygen consumption rate; PBS: phosphate-buffered saline; pcDNA: plasmid cytomegalovirus promoter DNA; PCR: polymerase chain reaction; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns(3,5)P2: phosphatidylinositol-3,5-bisphosphate; PIKFYVE: phosphoinositide kinase, FYVE-type zinc finger containing; P/S: penicillin-streptomycin; PVDF: polyvinylidene fluoride; qPCR: quantitative real time polymerase chain reaction; RFP: red fluorescent protein; RNA: ribonucleic acid; SDS-PAGE: sodium dodecyl sulfate polyacrylamide gel electrophoresis; shRNA: short hairpin RNA; siRNA: small interfering RNA; TFEB: transcription factor EB; TFE3: transcription factor binding to IGHM enhancer 3; TMRM: tetramethylrhodamine, methyl ester, perchlorate; ULK1: unc-51 like autophagy activating kinase 1; ULK2: unc-51 like autophagy activating kinase 2; UQCRC1: ubiquinol-cytochrome c reductase core protein 1; v-ATPase: vacuolar-type H+-translocating ATPase; WT: wild-type."],["dc.identifier.doi","10.1080/15548627.2019.1586256"],["dc.identifier.pmid","30917721"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16120"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59941"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/63"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/337327/EU//MITOPEXLYSONETWORK"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P02: Charakterisierung der ER-Mitochondrien-Kontakte und ihre Rolle in der Signalweiterleitung"],["dc.relation.workinggroup","RG Milosevic (Synaptic Vesicle Dynamics)"],["dc.relation.workinggroup","RG Raimundo"],["dc.rights","CC BY-NC-ND 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-nd/4.0"],["dc.subject.ddc","612"],["dc.title","Mitochondrial respiratory chain deficiency inhibits lysosomal hydrolysis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC