Options
Scholz, Julius
Loading...
Preferred name
Scholz, Julius
Official Name
Scholz, Julius
Alternative Name
Scholz, J.
Now showing 1 - 6 of 6
2017Journal Article Research Paper [["dc.bibliographiccitation.firstpage","1700109"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","Advanced sustainable systems"],["dc.bibliographiccitation.volume","1"],["dc.contributor.author","Mierwaldt, Daniel"],["dc.contributor.author","Roddatis, Vladimir"],["dc.contributor.author","Risch, Marcel"],["dc.contributor.author","Scholz, Julius"],["dc.contributor.author","Geppert, Janis"],["dc.contributor.author","Abrishami, Majid Ebrahimizadeh"],["dc.contributor.author","Jooss, Christian"],["dc.date.accessioned","2020-12-10T14:06:44Z"],["dc.date.available","2020-12-10T14:06:44Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1002/adsu.201700109"],["dc.identifier.issn","2366-7486"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/70006"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","SFB 1073: Kontrolle von Energiewandlung auf atomaren Skalen"],["dc.relation","SFB 1073 | Topical Area C | C02 In situ hochauflösende Untersuchung des aktiven Zustands bei der photo- und elektrochemischen Wasserspaltung"],["dc.relation.orgunit","Institut für Materialphysik"],["dc.rights","CC BY-NC 4.0"],["dc.title","Environmental TEM Investigation of Electrochemical Stability of Perovskite and Ruddlesden-Popper Type Manganite Oxygen Evolution Catalysts"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2016Journal Article Research Paper [["dc.bibliographiccitation.firstpage","27746"],["dc.bibliographiccitation.issue","49"],["dc.bibliographiccitation.journal","The Journal of Physical Chemistry C"],["dc.bibliographiccitation.lastpage","27756"],["dc.bibliographiccitation.volume","120"],["dc.contributor.author","Scholz, Julius"],["dc.contributor.author","Risch, Marcel"],["dc.contributor.author","Stoerzinger, Kelsey A."],["dc.contributor.author","Wartner, Garlef"],["dc.contributor.author","Shao-Horn, Yang"],["dc.contributor.author","Jooss, Christian"],["dc.date.accessioned","2018-11-07T10:04:30Z"],["dc.date.available","2018-11-07T10:04:30Z"],["dc.date.issued","2016"],["dc.description.abstract","Transition-metal oxides with the perovskite structure are promising catalysts to promote the kinetics of the oxygen evolution reaction (OER). To improve the activity and stability of these catalysts, a deeper understanding about the active site, the underlying reaction mechanism, and possible side reactions is necessary. We chose smooth epitaxial (100)-oriented La0.6Sr0.4.MnO3 (LSMO) films grown on Nb:SrTiO3 (STNO) as a model electrode to investigate OER activity and stability using the rotating ring disk electrode (RRDE) method. Careful electrochemical characterization of various films in the thickness range between 10 and 200 nm yields an OER activity of the epitaxial LSMO surface of 100 mu A/cm(ox)(2) at 1.65 V vs RHE, which is among the highest reported for LSMO and close to (110)-oriented IrO2. Detailed post-mortem analysis using XPS, XRD, and AFM revealed the high structural and morphological stability of LSMO after OER. The observed correlation between activity and Mn vacancies on the surface suggested Mn as the active site for the OER in (100)-oriented LSMO, in contrast to similar perovskite manganites, such as Pr1-xCaxMnO3. The observed Tafel slope of about 60 mV/dec matches the theoretical prediction for a chemical rate limiting step that follows an electrochemical pre-equilibrium, probably O-O bond formation. Our study established LSMO as an atomically flat oxide with high intrinsic activity and high stability."],["dc.identifier.doi","10.1021/acs.jpcc.6b07654"],["dc.identifier.isi","000390072100003"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/38708"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.relation","SFB 1073: Kontrolle von Energiewandlung auf atomaren Skalen"],["dc.relation","SFB 1073 | Topical Area C | C01 Hydrid-Anordnungen für die Untersuchung photo-induzierter mehrstufiger katalytischer Prozesse"],["dc.relation.issn","1932-7447"],["dc.relation.orgunit","Institut für Materialphysik"],["dc.title","Rotating Ring-Disk Electrode Study of Oxygen Evolution at a Perovskite Surface: Correlating Activity to Manganese Concentration"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI WOS2017Journal Article Research Paper [["dc.bibliographiccitation.firstpage","6235"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","ACS Catalysis"],["dc.bibliographiccitation.lastpage","6244"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Odrobina, Jann"],["dc.contributor.author","Scholz, Julius"],["dc.contributor.author","Risch, Marcel"],["dc.contributor.author","Dechert, Sebastian"],["dc.contributor.author","Jooss, Christian"],["dc.contributor.author","Meyer, Franc"],["dc.date.accessioned","2020-11-05T14:37:46Z"],["dc.date.available","2020-11-05T14:37:46Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1021/acscatal.7b01883"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/68188"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-352"],["dc.relation","SFB 1073: Kontrolle von Energiewandlung auf atomaren Skalen"],["dc.relation","SFB 1073 | Topical Area C | C01 Hydrid-Anordnungen für die Untersuchung photo-induzierter mehrstufiger katalytischer Prozesse"],["dc.relation","SFB 1073 | Topical Area C | C05 Kontrolle Elektronen-getriebener Chemie durch Interkalation"],["dc.relation.eissn","2155-5435"],["dc.relation.issn","2155-5435"],["dc.relation.orgunit","Institut für Materialphysik"],["dc.title","Chasing the Achilles’ Heel in Hybrid Systems of Diruthenium Water Oxidation Catalysts Anchored on Indium Tin Oxide: The Stability of the Anchor"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI2016Journal Article Research Paper [["dc.bibliographiccitation.artnumber","921"],["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","Materials"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Abrishami, Majid Ebrahimizadeh"],["dc.contributor.author","Risch, Marcel"],["dc.contributor.author","Scholz, Julius"],["dc.contributor.author","Roddatis, Vladimir"],["dc.contributor.author","Osterthun, Norbert"],["dc.contributor.author","Jooss, Christian"],["dc.date.accessioned","2018-11-07T10:06:08Z"],["dc.date.available","2018-11-07T10:06:08Z"],["dc.date.issued","2016"],["dc.description.abstract","An improved understanding of the correlation between the electronic properties of Mn-O bonds, activity and stability of electro-catalysts for the oxygen evolution reaction (OER) is of great importance for an improved catalyst design. Here, an in-depth study of the relation between lattice structure, electronic properties and catalyst performance of the perovskite Ca1-xPrxMnO3 and the first-order RP-system Ca2-xPrxMnO4 at doping levels of x = 0, 0.25 and 0.5 is presented. Lattice structure is determined by X-ray powder diffraction and Rietveld refinement. X-ray absorption spectroscopy of Mn-L and O-K edges gives access to Mn valence and covalency of the Mn-O bond. Oxygen evolution activity and stability is measured by rotating ring disc electrode studies. We demonstrate that the highest activity and stability coincidences for systems with a Mn-valence state of +3.7, though also requiring that the covalency of the Mn-O bond has a relative minimum. This observation points to an oxygen evolution mechanism with high redox activity of Mn. Covalency should be large enough for facile electron transfer from adsorbed oxygen species to the MnO6 network; however, it should not be hampered by oxidation of the lattice oxygen, which might cause a crossover to material degradation. Since valence and covalency changes are not entirely independent, the introduction of the energy position of the e(g)(up arrow) pre-edge peak in the O-K spectra as a new descriptor for oxygen evolution is suggested, leading to a volcano-like representation of the OER activity."],["dc.identifier.doi","10.3390/ma9110921"],["dc.identifier.isi","000390114400007"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14105"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/39033"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.relation","SFB 1073: Kontrolle von Energiewandlung auf atomaren Skalen"],["dc.relation","SFB 1073 | Topical Area C | C02 In situ hochauflösende Untersuchung des aktiven Zustands bei der photo- und elektrochemischen Wasserspaltung"],["dc.relation.issn","1996-1944"],["dc.relation.orgunit","Fakultät für Physik"],["dc.relation.orgunit","Institut für Materialphysik"],["dc.rights","CC BY 4.0"],["dc.title","Oxygen Evolution at Manganite Perovskite Ruddlesden-Popper Type Particles: Trends of Activity on Structure, Valence and Covalence"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI WOS2020Journal Article Research Paper [["dc.bibliographiccitation.firstpage","7893"],["dc.bibliographiccitation.issue","14"],["dc.bibliographiccitation.journal","The Journal of Physical Chemistry C"],["dc.bibliographiccitation.lastpage","7902"],["dc.bibliographiccitation.volume","124"],["dc.contributor.author","Busse, Philipp"],["dc.contributor.author","Yin, Zhong"],["dc.contributor.author","Mierwaldt, Daniel"],["dc.contributor.author","Scholz, Julius"],["dc.contributor.author","Kressdorf, Birte"],["dc.contributor.author","Glaser, Leif"],["dc.contributor.author","Miedema, Piter S."],["dc.contributor.author","Rothkirch, André"],["dc.contributor.author","Viefhaus, Jens"],["dc.contributor.author","Jooss, Christian"],["dc.contributor.author","Techert, Simone"],["dc.contributor.author","Risch, Marcel"],["dc.date.accessioned","2020-12-10T15:22:44Z"],["dc.date.available","2020-12-10T15:22:44Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1021/acs.jpcc.0c00840"],["dc.identifier.eissn","1932-7455"],["dc.identifier.issn","1932-7447"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/73515"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","SFB 1073: Kontrolle von Energiewandlung auf atomaren Skalen"],["dc.relation","SFB 1073 | Topical Area B | B06 Echtzeituntersuchungen der optischen Anregung in oligonuklearen Metallkomplexen mit schaltbaren Spin- und Ladungszuständen"],["dc.relation","SFB 1073 | Topical Area C | C01 Hydrid-Anordnungen für die Untersuchung photo-induzierter mehrstufiger katalytischer Prozesse"],["dc.relation","SFB 1073 | Topical Area C | C02 In situ hochauflösende Untersuchung des aktiven Zustands bei der photo- und elektrochemischen Wasserspaltung"],["dc.relation","SFB 1073 | Topical Area C | C05 Kontrolle Elektronen-getriebener Chemie durch Interkalation"],["dc.relation.orgunit","Institut für Materialphysik"],["dc.relation.workinggroup","RG Techert (Structural Dynamics in Chemical Systems)"],["dc.title","Probing the Surface of La0.6Sr0.4MnO3 in Water Vapor by In Situ Photon-In/Photon-Out Spectroscopy"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI2017Journal Article Research Paper [["dc.bibliographiccitation.firstpage","139"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Catalysts"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Scholz, Julius"],["dc.contributor.author","Risch, Marcel"],["dc.contributor.author","Wartner, Garlef"],["dc.contributor.author","Luderer, Christoph"],["dc.contributor.author","Roddatis, Vladimir"],["dc.contributor.author","Jooss, Christian"],["dc.date.accessioned","2019-07-09T11:43:42Z"],["dc.date.available","2019-07-09T11:43:42Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.3390/catal7050139"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14658"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/58956"],["dc.notes.intern","Merged from goescholar"],["dc.relation.orgunit","Fakultät für Physik"],["dc.relation.orgunit","Institut für Materialphysik"],["dc.rights","CC BY 4.0"],["dc.title","Tailoring the Oxygen Evolution Activity and Stability Using Defect Chemistry"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI