Now showing 1 - 5 of 5
  • 2016Journal Article
    [["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Foundations of Computational Mathematics"],["dc.bibliographiccitation.lastpage","44"],["dc.bibliographiccitation.volume","18"],["dc.contributor.author","Chizat, Lénaïc"],["dc.contributor.author","Peyré, Gabriel"],["dc.contributor.author","Schmitzer, Bernhard"],["dc.contributor.author","Vialard, François-Xavier"],["dc.date.accessioned","2020-07-09T11:56:40Z"],["dc.date.available","2020-07-09T11:56:40Z"],["dc.date.issued","2016"],["dc.identifier.doi","10.1007/s10208-016-9331-y"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/66924"],["dc.relation.issn","1615-3375"],["dc.relation.issn","1615-3383"],["dc.title","An Interpolating Distance Between Optimal Transport and Fisher–Rao Metrics"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2015Preprint
    [["dc.contributor.author","Chizat, Lenaic"],["dc.contributor.author","Peyré, Gabriel"],["dc.contributor.author","Schmitzer, Bernhard"],["dc.contributor.author","Vialard, François-Xavier"],["dc.date.accessioned","2020-07-06T14:41:03Z"],["dc.date.available","2020-07-06T14:41:03Z"],["dc.date.issued","2015"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/66875"],["dc.title","Unbalanced Optimal Transport: Geometry and Kantorovich Formulation"],["dc.type","preprint"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details
  • 2017Journal Article
    [["dc.bibliographiccitation.firstpage","1385"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","SIAM Journal on Mathematical Analysis"],["dc.bibliographiccitation.lastpage","1418"],["dc.bibliographiccitation.volume","49"],["dc.contributor.author","Carlier, Guillaume"],["dc.contributor.author","Duval, Vincent"],["dc.contributor.author","Peyré, Gabriel"],["dc.contributor.author","Schmitzer, Bernhard"],["dc.date.accessioned","2020-07-09T11:56:23Z"],["dc.date.available","2020-07-09T11:56:23Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1137/15M1050264"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/66923"],["dc.relation.issn","0036-1410"],["dc.relation.issn","1095-7154"],["dc.title","Convergence of Entropic Schemes for Optimal Transport and Gradient Flows"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2018Journal Article
    [["dc.bibliographiccitation.firstpage","3090"],["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","Journal of Functional Analysis"],["dc.bibliographiccitation.lastpage","3123"],["dc.bibliographiccitation.volume","274"],["dc.contributor.author","Chizat, Lénaïc"],["dc.contributor.author","Peyré, Gabriel"],["dc.contributor.author","Schmitzer, Bernhard"],["dc.contributor.author","Vialard, François-Xavier"],["dc.date.accessioned","2020-06-15T14:49:01Z"],["dc.date.available","2020-06-15T14:49:01Z"],["dc.date.issued","2018"],["dc.description.abstract","This article presents a new class of distances between arbitrary nonnegative Radon measures inspired by optimal transport. These distances are defined by two equivalent alternative formulations: (i) a dynamic formulation defining the distance as a geodesic distance over the space of measures (ii) a static “Kantorovich” formulation where the distance is the minimum of an optimization problem over pairs of couplings describing the transfer (transport, creation and destruction) of mass between two measures. Both formulations are convex optimization problems, and the ability to switch from one to the other depending on the targeted application is a crucial property of our models. Of particular interest is the Wasserstein–Fisher–Rao metric recently introduced independently by [7], [15]. Defined initially through a dynamic formulation, it belongs to this class of metrics and hence automatically benefits from a static Kantorovich formulation."],["dc.identifier.doi","10.1016/j.jfa.2018.03.008"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/66318"],["dc.language.iso","en"],["dc.relation.issn","0022-1236"],["dc.title","Unbalanced optimal transport: Dynamic and Kantorovich formulations"],["dc.type","journal_article"],["dc.type.internalPublication","no"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2018Journal Article
    [["dc.bibliographiccitation.firstpage","2563"],["dc.bibliographiccitation.issue","314"],["dc.bibliographiccitation.journal","Mathematics of Computation"],["dc.bibliographiccitation.lastpage","2609"],["dc.bibliographiccitation.volume","87"],["dc.contributor.author","Chizat, Lénaïc"],["dc.contributor.author","Peyré, Gabriel"],["dc.contributor.author","Schmitzer, Bernhard"],["dc.contributor.author","Vialard, François-Xavier"],["dc.date.accessioned","2020-07-09T11:56:10Z"],["dc.date.available","2020-07-09T11:56:10Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1090/mcom/3303"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/66920"],["dc.relation.issn","0025-5718"],["dc.relation.issn","1088-6842"],["dc.title","Scaling algorithms for unbalanced optimal transport problems"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI