Now showing 1 - 3 of 3
  • 2018Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","323"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Biochimica et Biophysica Acta"],["dc.bibliographiccitation.lastpage","333"],["dc.bibliographiccitation.volume","1865"],["dc.contributor.author","Lorenzi, Isotta"],["dc.contributor.author","Oeljeklaus, Silke"],["dc.contributor.author","Aich, Abhishek"],["dc.contributor.author","Ronsör, Christin"],["dc.contributor.author","Callegari, Sylvie"],["dc.contributor.author","Dudek, Jan"],["dc.contributor.author","Warscheid, Bettina"],["dc.contributor.author","Dennerlein, Sven"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2018-01-09T14:12:01Z"],["dc.date.available","2018-01-09T14:12:01Z"],["dc.date.issued","2018"],["dc.description.abstract","The three mitochondrial-encoded proteins, COX1, COX2, and COX3, form the core of the cytochrome c oxidase. Upon synthesis, COX2 engages with COX20 in the inner mitochondrial membrane, a scaffold protein that recruits metallochaperones for copper delivery to the CuA-Site of COX2. Here we identified the human protein, TMEM177 as a constituent of the COX20 interaction network. Loss or increase in the amount of TMEM177 affects COX20 abundance leading to reduced or increased COX20 levels respectively. TMEM177 associates with newly synthesized COX2 and SCO2 in a COX20-dependent manner. Our data shows that by unbalancing the amount of TMEM177, newly synthesized COX2 accumulates in a COX20-associated state. We conclude that TMEM177 promotes assembly of COX2 at the level of CuA-site formation."],["dc.identifier.doi","10.1016/j.bbamcr.2017.11.010"],["dc.identifier.pmid","29154948"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15209"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11600"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/16"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P13: Protein Transport über den mitochondrialen Carrier Transportweg"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.rights","CC BY-ND 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nd/4.0"],["dc.title","The mitochondrial TMEM177 associates with COX20 during COX2 biogenesis"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2016Journal Article
    [["dc.bibliographiccitation.artnumber","e0168518"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","PLOS ONE"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Levchenko, Mariia"],["dc.contributor.author","Lorenzi, Isotta"],["dc.contributor.author","Dudek, Jan"],["dc.date.accessioned","2019-07-09T11:43:02Z"],["dc.date.available","2019-07-09T11:43:02Z"],["dc.date.issued","2016"],["dc.description.abstract","The outer mitochondrial membrane protein Atg32 is the central receptor for mitophagy, the mitochondria-specific form of autophagy. Atg32 is an unstable protein, and is rapidly degraded under conditions in which mitophagy is not induced. Here we show that Atg32 undergoes a posttranslational modification upon induction of mitophagy. The modification is dependent on the core autophagic machinery, including Atg8, and on the mitophagy-specific adaptor protein Atg11. The modified Atg32 is targeted to the vacuole where it becomes stabilized when vacuolar proteases are deficient. Interestingly, we find that this degradation pathway differs from the degradation pathway of non-modified Atg32, which neither involves vacuolar proteases, nor the proteasome. These analyses reveal that a posttranslational modification discriminates a form of Atg32 targeting mitochondria for mitophagy from that, which escapes mitophagy by rapid degradation."],["dc.identifier.doi","10.1371/journal.pone.0168518"],["dc.identifier.pmid","27992522"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14081"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/58805"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","1932-6203"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","The Degradation Pathway of the Mitophagy Receptor Atg32 Is Re-Routed by a Posttranslational Modification"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2016Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","4147"],["dc.bibliographiccitation.issue","23"],["dc.bibliographiccitation.journal","FEBS Letters"],["dc.bibliographiccitation.lastpage","4158"],["dc.bibliographiccitation.volume","590"],["dc.contributor.author","Callegari, Sylvie"],["dc.contributor.author","Richter, Frank"],["dc.contributor.author","Chojnacka, Katarzyna"],["dc.contributor.author","Jans, Daniel C."],["dc.contributor.author","Lorenzi, Isotta"],["dc.contributor.author","Pacheu-Grau, David"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Lenz, Christof"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Dudek, Jan"],["dc.contributor.author","Chacinska, Agnieszka"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2017-09-07T11:53:09Z"],["dc.date.available","2017-09-07T11:53:09Z"],["dc.date.issued","2016"],["dc.description.abstract","Hydrophobic inner mitochondrial membrane proteins with internal targeting signals, such as the metabolite carriers, use the carrier translocase (TIM22 complex) for transport into the inner membrane. Defects in this transport pathway have been associated with neurodegenerative disorders. While the TIM22 complex is well studied in baker's yeast, very little is known about the mammalian TIM22 complex. Using immunoprecipitation, we purified the human carrier translocase and identified a mitochondrial inner membrane protein TIM29 as a novel component, specific to metazoa. We show that TIM29 is a constituent of the 440 kDa TIM22 complex and interacts with oxidized TIM22. Our analyses demonstrate that TIM29 is required for the structural integrity of the TIM22 complex and for import of substrate proteins by the carrier translocase."],["dc.identifier.doi","10.1002/1873-3468.12450"],["dc.identifier.fs","625768"],["dc.identifier.gro","3145043"],["dc.identifier.pmid","27718247"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14166"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2736"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/59"],["dc.language.iso","en"],["dc.notes.intern","Crossref Import"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P01: Untersuchung der Unterschiede in der Zusammensetzung, Funktion und Position von individuellen MICOS Komplexen in einzelnen Säugerzellen"],["dc.relation","SFB 1190 | P13: Protein Transport über den mitochondrialen Carrier Transportweg"],["dc.relation","SFB 1190 | Z02: Massenspektrometrie-basierte Proteomanalyse"],["dc.relation.issn","0014-5793"],["dc.relation.workinggroup","RG Jakobs (Structure and Dynamics of Mitochondria)"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.relation.workinggroup","RG Urlaub (Bioanalytische Massenspektrometrie)"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","TIM29 is a subunit of the human carrier translocase required for protein transport"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC