Now showing 1 - 10 of 83
  • 2020Journal Article
    [["dc.bibliographiccitation.journal","Frontiers in Psychiatry"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Hansen, Niels"],["dc.contributor.author","Hirschel, Sina"],["dc.contributor.author","Stöcker, Winfried"],["dc.contributor.author","Manig, Anja"],["dc.contributor.author","Falk, Hannah Sönne"],["dc.contributor.author","Ernst, Marielle"],["dc.contributor.author","Vukovich, Ruth"],["dc.contributor.author","Zerr, Inga"],["dc.contributor.author","Wiltfang, Jens"],["dc.contributor.author","Bartels, Claudia"],["dc.date.accessioned","2021-04-14T08:23:48Z"],["dc.date.available","2021-04-14T08:23:48Z"],["dc.date.issued","2020"],["dc.description.abstract","Background IgLON5 disease is an autoimmune disorder that shares neuropathological aspects with a tauopathy. Its clinical spectrum is heterogeneous, and figural memory impairment as an initial phenomenon of IgLON5 syndrome has not yet been described. The rationale of this report is to highlight symptoms related to IgLON5 disease that have not been reported to date. This case report will thereby emphasize how important it is to initiate thorough diagnostic methods including cerebrospinal fluid analysis (CSF) before starting early immunotherapy. Methods We examined a 65-year-old Caucasian male via neuropsychological tests, magnetic resonance imaging (MRI), electroencephalography (EEG), neurography and polysomnography. He also underwent two lumbar punctures from which we determined specific autoantibodies in cerebrospinal (CSF) and peripheral blood (PB). Results The patient presented initially complaining of memory loss, gradual dysphagia and sleeping dysfunction. Neuropsychological testing at first presentation and follow-up revealed subtle figural and working memory impairment. At onset and at his 6-month follow-up, we detected IgLON5 antibodies in CSF and PB. Furthermore, we identified in the CSF a blood–brain barrier disturbance at disease onset and follow-up, and markers of neuroaxonal damage such as mildly elevated phosphorylated Tau-181 protein with 86 pg/ml (normal range ≤ 61 pg/ml) at onset. Three months after his initial presentation, he was suffering from axonal neuropathy and transient ataxia in the extremities. Assuming a definitive autoimmune encephalitis-associated with anti-IgLON5 antibodies, we applied high-dose steroids monthly (1g methylprednisolone i.v. for five consecutive days) and his memory complaints, ataxia of extremities and peripheral neuropathy as well as sleeping dysfunction decreased. Conclusions Our findings broaden IgLON5 disease’s clinical spectrum to include predominant and discrete figural memory impairment together with sleeping dysfunction at disease onset. In addition, our report illustrates how important taking an elaborated diagnostic approach is to assuring an accurate diagnosis and the appropriate therapy if a patient presents with a persisting figural memory impairment and sleeping abnormalities so as to avoid overlooking IgLON5 disease and a potentially poor outcome."],["dc.identifier.doi","10.3389/fpsyt.2020.00576"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/17685"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/81054"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.notes.intern","Merged from goescholar"],["dc.publisher","Frontiers Media S.A."],["dc.relation.eissn","1664-0640"],["dc.relation.haserratum","/handle/2/83966"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Figural Memory Impairment in Conjunction With Neuropsychiatric Symptoms in IgLON5 Antibody-Associated Autoimmune Encephalitis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2009Journal Article
    [["dc.bibliographiccitation.firstpage","355"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Journal of Neurology"],["dc.bibliographiccitation.lastpage","363"],["dc.bibliographiccitation.volume","256"],["dc.contributor.author","Meissner, Bettina"],["dc.contributor.author","Kallenberg, Kai"],["dc.contributor.author","Sanchez-Juan, Pascual"],["dc.contributor.author","Ramljak, Sanja"],["dc.contributor.author","Krasnianski, Anna"],["dc.contributor.author","Heinemann, U."],["dc.contributor.author","Eigenbrod, Sabina"],["dc.contributor.author","Gelpi, Elena"],["dc.contributor.author","Barsic, B."],["dc.contributor.author","Kretzschmar, Hans A."],["dc.contributor.author","Schulz-Schaeffer, Walter J."],["dc.contributor.author","Knauth, Michael"],["dc.contributor.author","Zerr, I."],["dc.date.accessioned","2018-11-07T08:32:16Z"],["dc.date.available","2018-11-07T08:32:16Z"],["dc.date.issued","2009"],["dc.description.abstract","Iatrogenic Creutzfeldt-Jakob disease (iCJD) is mainly associated with dura mater (DM) grafts and administration of human growth hormones (hGH). Data on disease course in DM-CJD are limited. We describe the clinical and diagnostic findings in this patient group with special emphasis on MRI signal alterations. Ten DM-CJD patients were studied for their clinical symptoms and diagnostic findings. The MRIs were evaluated for signal increase of the cortical and subcortical structures. DM-CJD patients had a median incubation time of 18 years and median disease duration of 7 months. The majority of patients were MM homozygous at codon 129 of the prion protein gene (PRNP) and presented with gait ataxia and psychiatric symptoms. No correlation between the graft site and the initial disease course was found. The MRI showed cortical and basal ganglia signal increase each in eight out of ten patients and thalamic hyperintensity in five out of ten cases. Of interest, patients with thalamic signal increase were homozygous for methionine. The MRI findings in DM-CJD largely resemble those seen in sporadic CJD, as the cortex and basal ganglia are mainly affected."],["dc.identifier.doi","10.1007/s00415-009-0026-z"],["dc.identifier.isi","000265732800008"],["dc.identifier.pmid","19159063"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/6742"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/17302"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.publisher.place","Heidelberg"],["dc.relation.issn","0340-5354"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","MRI and clinical syndrome in dura materrelated Creutzfeldt-Jakob disease"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2014Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","551"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Journal of Alzheimer's Disease"],["dc.bibliographiccitation.lastpage","565"],["dc.bibliographiccitation.volume","38"],["dc.contributor.author","Schmitz, M."],["dc.contributor.author","Wulf, K."],["dc.contributor.author","Signore, S. C."],["dc.contributor.author","Schulz-Schaeffer, W. J."],["dc.contributor.author","Kermer, P."],["dc.contributor.author","Baehr, M."],["dc.contributor.author","Wouters, F. S."],["dc.contributor.author","Zafar, S."],["dc.contributor.author","Zerr, I."],["dc.date.accessioned","2017-09-07T11:46:57Z"],["dc.date.available","2017-09-07T11:46:57Z"],["dc.date.issued","2014"],["dc.description.abstract","Previous studies indicate an important role for the cellular prion protein (PrPC) in the development of Alzheimer's disease (AD) pathology. In the present study, we analyzed the involvement of PrPC in different pathological mechanisms underlying AD: the processing of the amyloid-beta protein precursor (A beta PP) and its interaction with A beta PP, tau, and different phosphorylated forms of the tau protein (p-tau). The effect of PrPC on tau expression was investigated in various cellular compartments using a HEK293 cell model expressing a tau mutant (3PO-tau) or wild type (WT)-tau. We could show that PrPC reduces A beta PP cleavage, leading to decreased levels of A beta(40) and sA beta PP without changing the protein expression of A beta PP, beta-secretase, or gamma-secretase. Tau and its phosphorylated forms were identified as interactions partners for PrPC, raising the question as to whether PrPC might also be involved in tau pathology. Overexpression of PrPC in PRNP and 3PO-tau transfected cells resulted in a reduction of 3PO-tau and p-tau as well as a decrease of 3PO-tau-related toxicity. In addition, we used the transgenic PrPC knockout (Prnp0/0) mouse line to study the dynamics of tau phosphorylation, an important pathological hallmark in the pathogenesis of AD in vivo. There, an effect of PrPC on tau expression could be observed under oxidative stress conditions but not during aging. In summary, we provide further evidence for interactions of PrPC with proteins that are known to be the key players in AD pathogenesis. We identified tau and its phosphorylated forms as potential PrP-interactors and report a novel protective function of PrPC in AD-like tau pathology."],["dc.identifier.doi","10.3233/JAD-130566"],["dc.identifier.gro","3142228"],["dc.identifier.isi","000327598500009"],["dc.identifier.pmid","24028865"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/10657"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/5954"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1875-8908"],["dc.relation.issn","1387-2877"],["dc.rights","CC BY 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/3.0"],["dc.title","Impact of the Cellular Prion Protein on Amyloid-beta and 3PO-Tau Processing"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2010Journal Article
    [["dc.bibliographiccitation.firstpage","371"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Dementia and Geriatric Cognitive Disorders"],["dc.bibliographiccitation.lastpage","378"],["dc.bibliographiccitation.volume","29"],["dc.contributor.author","Schmidt, Christian D."],["dc.contributor.author","Redyk, Katharina"],["dc.contributor.author","Meissner, Bettina"],["dc.contributor.author","Krack, Lennart A."],["dc.contributor.author","von Ahsen, Nico"],["dc.contributor.author","Roeber, Sigrun"],["dc.contributor.author","Kretzschmar, Hans A."],["dc.contributor.author","Zerr, Inga"],["dc.date.accessioned","2018-11-07T08:47:31Z"],["dc.date.available","2018-11-07T08:47:31Z"],["dc.date.issued","2010"],["dc.description.abstract","Objective: To characterize clinical features, CSF biomarkers and genetic polymorphisms of patients suffering from a rapidly progressing subtype of Alzheimer's dementia (rpAD). Methods: Retrospective analyses of 32 neuropathologically confirmed cases differentially diagnosed as AD out of a group with rapidly progressive dementia. CSF biomarkers (14-3-3, tau, beta-amyloid 1-42) and genetic markers (PRNP codon 129, apolipoprotein E, ApoE, polymorphism) were determined. Results: Median survival was 26 months, age at onset 73 years. Biomarkers: mean beta-amyloid 1-42: 266 pg/ml, median tau: 491 pg/ml, 14-3-3 positive: 31%. Genetic polymorphisms showed a predominance of methionine homozygosity at PRNP codon 129 and a low frequency of ApoE4 (38%, no homozygous patients). Thirty-five symptoms were studied. Frequent symptoms were myoclonus (75%), disturbed gait (66%) and rigidity (50%). Discussion: rpAD is associated with a diversity of neurological signs even able to mimic Creutz feldt-Jakob disease. Biomarkers and genetic profile differ from those seen in classical AD. The findings on biomarkers, symptomatology and genetics may aid the differential diagnostic process. Copyright (C) 2010 S. Karger AG, Basel"],["dc.identifier.doi","10.1159/000278692"],["dc.identifier.isi","000278130700012"],["dc.identifier.pmid","20453509"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/9103"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/20975"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Karger"],["dc.relation.issn","1420-8008"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Clinical Features of Rapidly Progressive Alzheimer's Disease"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2020Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","6298"],["dc.bibliographiccitation.issue","17"],["dc.bibliographiccitation.journal","International Journal of Molecular Sciences"],["dc.bibliographiccitation.volume","21"],["dc.contributor.affiliation","Podlesniy, Petar; \t\t \r\n\t\t Neurobiology Unit, Institut d’Investigacions Biomèdiques de Barcelona (CSIC), 08036 Barcelona, Spain, ppodlesniy@gmail.com\t\t \r\n\t\t Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08036 Barcelona, Spain, ppodlesniy@gmail.com"],["dc.contributor.affiliation","Llorens, Franc; \t\t \r\n\t\t Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08036 Barcelona, Spain, franc.llorens@gmail.com\t\t \r\n\t\t Bellvitge Biomedical Research Institute (IBIDELL), 08908 L’Hospitalet de Llobregat, Spain, franc.llorens@gmail.com\t\t \r\n\t\t Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University, 37075 Göttingen, Germany, franc.llorens@gmail.com"],["dc.contributor.affiliation","Puigròs, Margalida; \t\t \r\n\t\t Neurobiology Unit, Institut d’Investigacions Biomèdiques de Barcelona (CSIC), 08036 Barcelona, Spain, puigrosserra.m@gmail.com\t\t \r\n\t\t Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08036 Barcelona, Spain, puigrosserra.m@gmail.com"],["dc.contributor.affiliation","Serra, Nuria; \t\t \r\n\t\t Neurobiology Unit, Institut d’Investigacions Biomèdiques de Barcelona (CSIC), 08036 Barcelona, Spain, serranuri@gmail.com\t\t \r\n\t\t Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08036 Barcelona, Spain, serranuri@gmail.com"],["dc.contributor.affiliation","Sepúlveda-Falla, Diego; \t\t \r\n\t\t Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany, d.sepulveda-falla@uke.uni-hamburg.de"],["dc.contributor.affiliation","Schmidt, Christian; \t\t \r\n\t\t Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University, 37075 Göttingen, Germany, Christian.Schmidt@medizin.uni-goettingen.de\t\t \r\n\t\t German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany, Christian.Schmidt@medizin.uni-goettingen.de"],["dc.contributor.affiliation","Hermann, Peter; \t\t \r\n\t\t Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University, 37075 Göttingen, Germany, peter.hermann@med.uni-goettingen.de\t\t \r\n\t\t German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany, peter.hermann@med.uni-goettingen.de"],["dc.contributor.affiliation","Zerr, Inga; \t\t \r\n\t\t Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University, 37075 Göttingen, Germany, IngaZerr@med.uni-goettingen.de\t\t \r\n\t\t German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany, IngaZerr@med.uni-goettingen.de"],["dc.contributor.affiliation","Trullas, Ramon; \t\t \r\n\t\t Neurobiology Unit, Institut d’Investigacions Biomèdiques de Barcelona (CSIC), 08036 Barcelona, Spain, ramon.trullas@iibb.csic.es\t\t \r\n\t\t Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08036 Barcelona, Spain, ramon.trullas@iibb.csic.es\t\t \r\n\t\t Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain, ramon.trullas@iibb.csic.es"],["dc.contributor.author","Podlesniy, Petar"],["dc.contributor.author","Llorens, Franc"],["dc.contributor.author","Puigròs, Margalida"],["dc.contributor.author","Serra, Nuria"],["dc.contributor.author","Sepúlveda-Falla, Diego"],["dc.contributor.author","Schmidt, Christian"],["dc.contributor.author","Hermann, Peter"],["dc.contributor.author","Zerr, Inga"],["dc.contributor.author","Trullas, Ramon"],["dc.date.accessioned","2021-04-14T08:32:33Z"],["dc.date.available","2021-04-14T08:32:33Z"],["dc.date.issued","2020"],["dc.date.updated","2022-09-07T00:35:16Z"],["dc.identifier.doi","10.3390/ijms21176298"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/83949"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation.eissn","1422-0067"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0/"],["dc.title","Cerebrospinal Fluid Mitochondrial DNA in Rapid and Slow Progressive Forms of Alzheimer’s Disease"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1566"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","International Journal of Molecular Sciences"],["dc.bibliographiccitation.volume","22"],["dc.contributor.affiliation","Ramljak, Sanja; \t\t \r\n\t\t Digital Diagnostics AG, 55129 Mainz, Germany, sr@digid.com"],["dc.contributor.affiliation","Schmitz, Matthias; \t\t \r\n\t\t Department of Neurology, University Medicine Goettingen and The German Center for Neurodegenerative Diseases (DZNE), 37075 Goettingen, Germany, matthias.schmitz@med.uni-goettingen.de"],["dc.contributor.affiliation","Repond, Cendrine; \t\t \r\n\t\t Département de Physiologie, Université de Lausanne, 1005 Lausanne, Switzerland, Cendrine.Repond@unil.ch"],["dc.contributor.affiliation","Zerr, Inga; \t\t \r\n\t\t Department of Neurology, University Medicine Goettingen and The German Center for Neurodegenerative Diseases (DZNE), 37075 Goettingen, Germany, ingazerr@med.uni-goettingen.de"],["dc.contributor.affiliation","Pellerin, Luc; \t\t \r\n\t\t Département de Physiologie, Université de Lausanne, 1005 Lausanne, Switzerland, luc.pellerin@univ-poitiers.fr\t\t \r\n\t\t Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, LabEx TRAIL-IBIO, Université de Bordeaux, 33760 Bordeaux CEDEX, France, luc.pellerin@univ-poitiers.fr"],["dc.contributor.author","Ramljak, Sanja"],["dc.contributor.author","Schmitz, Matthias"],["dc.contributor.author","Repond, Cendrine"],["dc.contributor.author","Zerr, Inga"],["dc.contributor.author","Pellerin, Luc"],["dc.date.accessioned","2021-06-01T10:48:47Z"],["dc.date.available","2021-06-01T10:48:47Z"],["dc.date.issued","2021"],["dc.date.updated","2022-09-06T18:21:55Z"],["dc.description.abstract","The effect of a cellular prion protein (PrPc) deficiency on neuroenergetics was primarily analyzed via surveying the expression of genes specifically involved in lactate/pyruvate metabolism, such as monocarboxylate transporters (MCT1, MCT2, MCT4). The aim of the present study was to elucidate a potential involvement of PrPc in the regulation of energy metabolism in different brain regions. By using quantitative real-time polymerase chain reaction (qRT-PCR), we observed a marked reduction in MCT1 mRNA expression in the cortex of symptomatic Zürich I Prnp−/− mice, as compared to their wild-type (WT) counterparts. MCT1 downregulation in the cortex was accompanied with significantly decreased expression of the MCT1 functional interplayer, the Na+/K+ ATPase α2 subunit. Conversely, the MCT1 mRNA level was significantly raised in the cerebellum of Prnp−/− vs. WT control group, without a substantial change in the Na+/K+ ATPase α2 subunit expression. To validate the observed mRNA findings, we confirmed the observed change in MCT1 mRNA expression level in the cortex at the protein level. MCT4, highly expressed in tissues that rely on glycolysis as an energy source, exhibited a significant reduction in the hippocampus of Prnp−/− vs. WT mice. The present study demonstrates that a lack of PrPc leads to altered MCT1 and MCT4 mRNA/protein expression in different brain regions of Prnp−/− vs. WT mice. Our findings provide evidence that PrPc might affect the monocarboxylate intercellular transport, which needs to be confirmed in further studies."],["dc.description.sponsorship","IDEX"],["dc.identifier.doi","10.3390/ijms22041566"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/86055"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.relation.eissn","1422-0067"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0/"],["dc.title","Altered mRNA and Protein Expression of Monocarboxylate Transporter MCT1 in the Cerebral Cortex and Cerebellum of Prion Protein Knockout Mice"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2009Journal Article
    [["dc.bibliographiccitation.firstpage","659"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Acta Neuropathologica"],["dc.bibliographiccitation.lastpage","671"],["dc.bibliographiccitation.volume","118"],["dc.contributor.author","Parchi, Piero"],["dc.contributor.author","Strammiello, Rosaria"],["dc.contributor.author","Notari, Silvio"],["dc.contributor.author","Giese, Armin"],["dc.contributor.author","Langeveld, Jan P. M."],["dc.contributor.author","Ladogana, Anna"],["dc.contributor.author","Zerr, Inga"],["dc.contributor.author","Roncaroli, Federico"],["dc.contributor.author","Cras, Patrich"],["dc.contributor.author","Ghetti, Bernardino"],["dc.contributor.author","Pocchiari, Maurizio"],["dc.contributor.author","Kretzschmar, Hans A."],["dc.contributor.author","Capellari, Sabina"],["dc.date.accessioned","2018-11-07T11:22:19Z"],["dc.date.available","2018-11-07T11:22:19Z"],["dc.date.issued","2009"],["dc.description.abstract","Six subtypes of sporadic Creutzfeldt-Jakob disease with distinctive clinico-pathological features have been identified largely based on two types of the abnormal prion protein, PrPSc, and the methionine (M)/valine (V) polymorphic codon 129 of the prion protein. The existence of affected subjects showing mixed phenotypic features and concurrent PrPSc types has been reported but with inconsistencies among studies in both results and their interpretation. The issue currently complicates diagnosis and classification of cases and also has implications for disease pathogenesis. To explore the issue in depth, we carried out a systematic regional study in a large series of 225 cases. PrPSc types 1 and 2 concurrence was detected in 35% of cases and was higher in MM than in MV or VV subjects. The deposition of either type 1 or 2, when concurrent, was not random and always characterized by the coexistence of phenotypic features previously described in the pure subtypes. PrPSc type 1 accumulation and related pathology predominated in MM and MV cases, while the type 2 phenotype prevailed in VVs. Neuropathological examination best identified the mixed types 1 and 2 features in MMs and most MVs, and also uniquely revealed the co-occurrence of pathological variants sharing PrPSc type 2. In contrast, molecular typing best detected the concurrent PrPSc types in VV subjects and MV cases with kuru plaques. The present data provide an updated disease classification and are of importance for future epidemiologic and transmission studies aimed to identify etiology and extent of strain variation in sporadic Creutzfeldt-Jakob disease."],["dc.identifier.doi","10.1007/s00401-009-0585-1"],["dc.identifier.isi","000271394600009"],["dc.identifier.pmid","19718500"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?goescholar/3756"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/55968"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.relation.issn","0001-6322"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Incidence and spectrum of sporadic Creutzfeldt-Jakob disease variants with mixed phenotype and co-occurrence of PrPSc types: an updated classification"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2013Journal Article
    [["dc.bibliographiccitation.artnumber","e67743"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","PLoS ONE"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Roettger, Yvonne"],["dc.contributor.author","Zerr, Inga"],["dc.contributor.author","Dodel, Richard"],["dc.contributor.author","Bach, Jan-Philipp"],["dc.date.accessioned","2018-11-07T09:23:32Z"],["dc.date.available","2018-11-07T09:23:32Z"],["dc.date.issued","2013"],["dc.description.abstract","In prion disease, a profound microglial activation that precedes neurodegeneration has been observed in the CNS. It is still not fully elucidated whether microglial activation has beneficial effects in terms of prion clearance or whether microglial cells have a mainly detrimental function through the release of pro-inflammatory cytokines. To date, no disease-modifying therapy exists. Several immunization attempts have been performed as one therapeutic approach. Recently, naturally occurring autoantibodies against the prion protein (nAbs-PrP) have been detected. These autoantibodies are able to break down fibrils of the most commonly used mutant prion variant PrP106-126 A117V and prevent PrP106-126 A117V-induced toxicity in primary neurons. In this study, we examined the phagocytosis of the prion peptide PrP106-126 A117V by primary microglial cells and the effect of nAbs-PrP on microglia. nAbs-PrP considerably enhanced the uptake of PrP106-126 A117V without inducing an inflammatory response in microglial cells. PrP106-126 A117V uptake was at least partially mediated through scavenger receptors. Phagocytosis of PrP106-126 A117V with nAbs-PrP was inhibited by wortmannin, a potent phosphatidylinositol 3-kinase inhibitor, indicating a separate uptake mechanism for nAbs-PrP mediated phagocytosis. These data suggest the possible mechanisms of action of nAbs-PrP in prion disease."],["dc.identifier.doi","10.1371/journal.pone.0067743"],["dc.identifier.isi","000321148400129"],["dc.identifier.pmid","23840767"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/9145"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/29604"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Public Library Science"],["dc.relation.issn","1932-6203"],["dc.rights","CC BY-NC 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc/3.0"],["dc.title","Prion Peptide Uptake in Microglial Cells - The Effect of Naturally Occurring Autoantibodies against Prion Protein"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2012Review
    [["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Prion"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Schmidt, Christian D."],["dc.contributor.author","Karch, Andre"],["dc.contributor.author","Korth, Carsten"],["dc.contributor.author","Zerr, Inga"],["dc.date.accessioned","2018-11-07T09:03:55Z"],["dc.date.available","2018-11-07T09:03:55Z"],["dc.date.issued","2012"],["dc.description.abstract","Results from recent experiments with rodents imply that Alzheimer disease might be inducible by seeding A beta peptides into recipient animals. In respect to this new experimental data, public health aspects as well as epidemiological data have to be reevaluated. In this article, the available experimental and epidemiological data are reviewed."],["dc.identifier.doi","10.4161/pri.22502"],["dc.identifier.isi","000311341100008"],["dc.identifier.pmid","23052009"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/10653"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/24999"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Landes Bioscience"],["dc.relation.issn","1933-6896"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","On the issue of transmissibility of Alzheimer disease A critical review"],["dc.type","review"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2015Journal Article
    [["dc.bibliographiccitation.firstpage","396"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Molecular Neurobiology"],["dc.bibliographiccitation.lastpage","405"],["dc.bibliographiccitation.volume","51"],["dc.contributor.author","Cramm, Maria"],["dc.contributor.author","Schmitz, Matthias"],["dc.contributor.author","Karch, Andre"],["dc.contributor.author","Zafar, Saima"],["dc.contributor.author","Varges, Daniel. A."],["dc.contributor.author","Mitrova, Eva"],["dc.contributor.author","Schroeder, Bjoern"],["dc.contributor.author","Raeber, Alex"],["dc.contributor.author","Kuhn, Franziska"],["dc.contributor.author","Zerr, Inga"],["dc.date.accessioned","2018-11-07T10:01:38Z"],["dc.date.available","2018-11-07T10:01:38Z"],["dc.date.issued","2015"],["dc.description.abstract","The development of in vitro amplification systems allows detecting femtomolar amounts of prion protein scrapie (PrPSc) in human cerebrospinal fluid (CSF). We performed a CSF study to determine the effects of prion disease type, codon 129 genotype, PrPSc type, and other disease-related factors on the real-time quaking-induced conversion (RT-QuIC) response. We analyzed times to 10,000 relative fluorescence units, areas under the curve and the signal maximum of RT-QuIC response as seeding parameters of interest. Interestingly, type of prion disease (sporadic vs. genetic) and the PRNP mutation (E200K vs. V210I and FFI), codon 129 genotype, and PrPSc type affected RT-QuIC response. In genetic forms, type of mutation showed the strongest effect on the observed outcome variables. In sporadic CJD, MM1 patients displayed a higher RT-QuIC signal maximum compared to MV1 and VV1. Age and gender were not associated with RT-QuIC signal, but patients with a short disease course showed a higher seeding efficiency of the RT-QuIC response. This study demonstrated that PrPSc characteristics in the CSF of human prion disease patients are associated with disease subtypes and rate of decline as defined by disease duration."],["dc.identifier.doi","10.1007/s12035-014-8709-6"],["dc.identifier.isi","000349006200031"],["dc.identifier.pmid","24809690"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/10255"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/38062"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Humana Press Inc"],["dc.relation.issn","1559-1182"],["dc.relation.issn","0893-7648"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Characteristic CSF Prion Seeding Efficiency in Humans with Prion Diseases"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS