Options
Aich, Abhishek
Loading...
Preferred name
Aich, Abhishek
Official Name
Aich, Abhishek
Alternative Name
Aich, A.
Now showing 1 - 4 of 4
2018Journal Article Research Paper [["dc.bibliographiccitation.firstpage","323"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Biochimica et Biophysica Acta"],["dc.bibliographiccitation.lastpage","333"],["dc.bibliographiccitation.volume","1865"],["dc.contributor.author","Lorenzi, Isotta"],["dc.contributor.author","Oeljeklaus, Silke"],["dc.contributor.author","Aich, Abhishek"],["dc.contributor.author","Ronsör, Christin"],["dc.contributor.author","Callegari, Sylvie"],["dc.contributor.author","Dudek, Jan"],["dc.contributor.author","Warscheid, Bettina"],["dc.contributor.author","Dennerlein, Sven"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2018-01-09T14:12:01Z"],["dc.date.available","2018-01-09T14:12:01Z"],["dc.date.issued","2018"],["dc.description.abstract","The three mitochondrial-encoded proteins, COX1, COX2, and COX3, form the core of the cytochrome c oxidase. Upon synthesis, COX2 engages with COX20 in the inner mitochondrial membrane, a scaffold protein that recruits metallochaperones for copper delivery to the CuA-Site of COX2. Here we identified the human protein, TMEM177 as a constituent of the COX20 interaction network. Loss or increase in the amount of TMEM177 affects COX20 abundance leading to reduced or increased COX20 levels respectively. TMEM177 associates with newly synthesized COX2 and SCO2 in a COX20-dependent manner. Our data shows that by unbalancing the amount of TMEM177, newly synthesized COX2 accumulates in a COX20-associated state. We conclude that TMEM177 promotes assembly of COX2 at the level of CuA-site formation."],["dc.identifier.doi","10.1016/j.bbamcr.2017.11.010"],["dc.identifier.pmid","29154948"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15209"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11600"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/16"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P13: Protein Transport über den mitochondrialen Carrier Transportweg"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.rights","CC BY-ND 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nd/4.0"],["dc.title","The mitochondrial TMEM177 associates with COX20 during COX2 biogenesis"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2019Journal Article [["dc.bibliographiccitation.firstpage","598"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","The Journal of Cell Biology"],["dc.bibliographiccitation.lastpage","614"],["dc.bibliographiccitation.volume","218"],["dc.contributor.author","Richter, Frank"],["dc.contributor.author","Dennerlein, Sven"],["dc.contributor.author","Nikolov, Miroslav"],["dc.contributor.author","Jans, Daniel C."],["dc.contributor.author","Naumenko, Nataliia"],["dc.contributor.author","Aich, Abhishek"],["dc.contributor.author","MacVicar, Thomas"],["dc.contributor.author","Linden, Andreas"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Langer, Thomas"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2019-07-09T11:50:27Z"],["dc.date.available","2019-07-09T11:50:27Z"],["dc.date.issued","2019"],["dc.description.abstract","The mitochondrial presequence translocation machinery (TIM23 complex) is conserved between the yeast Saccharomyces cerevisiae and humans; however, functional characterization has been mainly performed in yeast. Here, we define the constituents of the human TIM23 complex using mass spectrometry and identified ROMO1 as a new translocase constituent with an exceptionally short half-life. Analyses of a ROMO1 knockout cell line revealed aberrant inner membrane structure and altered processing of the GTPase OPA1. We show that in the absence of ROMO1, mitochondria lose the inner membrane YME1L protease, which participates in OPA1 processing and ROMO1 turnover. While ROMO1 is dispensable for general protein import along the presequence pathway, we show that it participates in the dynamics of TIM21 during respiratory chain biogenesis and is specifically required for import of YME1L. This selective import defect can be linked to charge distribution in the unusually long targeting sequence of YME1L. Our analyses establish an unexpected link between mitochondrial protein import and inner membrane protein quality control."],["dc.identifier.doi","10.1083/jcb.201806093"],["dc.identifier.pmid","30598479"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15943"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59776"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/339580/EU//MITRAC"],["dc.relation.issn","1540-8140"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","610"],["dc.title","ROMO1 is a constituent of the human presequence translocase required for YME1L protease import"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2018Journal Article Research Paper [["dc.bibliographiccitation.artnumber","e32572"],["dc.bibliographiccitation.journal","eLife"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Aich, Abhishek"],["dc.contributor.author","Wang, Cong"],["dc.contributor.author","Chowdhury, Arpita"],["dc.contributor.author","Ronsör, Christin"],["dc.contributor.author","Pacheu-Grau, David"],["dc.contributor.author","Richter-Dennerlein, Ricarda"],["dc.contributor.author","Dennerlein, Sven"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2018-05-03T09:03:52Z"],["dc.date.accessioned","2021-10-27T13:21:07Z"],["dc.date.available","2018-05-03T09:03:52Z"],["dc.date.available","2021-10-27T13:21:07Z"],["dc.date.issued","2018"],["dc.description.abstract","Cytochrome c oxidase of the mitochondrial oxidative phosphorylation system reduces molecular oxygen with redox equivalent-derived electrons. The conserved mitochondrial-encoded COX1- and COX2-subunits are the heme- and copper-center containing core subunits that catalyze water formation. COX1 and COX2 initially follow independent biogenesis pathways creating assembly modules with subunit-specific, chaperone-like assembly factors that assist in redox centers formation. Here, we find that COX16, a protein required for cytochrome c oxidase assembly, interacts specifically with newly synthesized COX2 and its copper center-forming metallochaperones SCO1, SCO2, and COA6. The recruitment of SCO1 to the COX2-module is COX16- dependent and patient-mimicking mutations in SCO1 affect interaction with COX16. These findings implicate COX16 in CuA-site formation. Surprisingly, COX16 is also found in COX1-containing assembly intermediates and COX2 recruitment to COX1. We conclude that COX16 participates in merging the COX1 and COX2 assembly lines."],["dc.identifier.doi","10.7554/eLife.32572"],["dc.identifier.gro","3142446"],["dc.identifier.pmid","29381136"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15212"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/91995"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/200"],["dc.language.iso","en"],["dc.notes.intern","Migrated from goescholar"],["dc.notes.status","final"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A06: Molekulare Grundlagen mitochondrialer Kardiomyopathien"],["dc.relation.issn","2050-084X"],["dc.relation.orgunit","Universitätsmedizin Göttingen"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","610"],["dc.title","COX16 promotes COX2 metallation and assembly during respiratory complex IV biogenesis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2021Journal Article Research Paper [["dc.bibliographiccitation.firstpage","5824"],["dc.bibliographiccitation.issue","23"],["dc.bibliographiccitation.journal","Cell"],["dc.bibliographiccitation.lastpage","5837.e15"],["dc.bibliographiccitation.volume","184"],["dc.contributor.author","Cruz-Zaragoza, Luis Daniel"],["dc.contributor.author","Dennerlein, Sven"],["dc.contributor.author","Linden, Andreas"],["dc.contributor.author","Yousefi, Roya"],["dc.contributor.author","Lavdovskaia, Elena"],["dc.contributor.author","Aich, Abhishek"],["dc.contributor.author","Falk, Rebecca R."],["dc.contributor.author","Gomkale, Ridhima"],["dc.contributor.author","Schöndorf, Thomas"],["dc.contributor.author","Bohnsack, Markus T."],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2021-12-01T09:23:52Z"],["dc.date.available","2021-12-01T09:23:52Z"],["dc.date.issued","2021"],["dc.description.abstract","The human mitochondrial genome encodes thirteen core subunits of the oxidative phosphorylation system, and defects in mitochondrial gene expression lead to severe neuromuscular disorders. However, the mechanisms of mitochondrial gene expression remain poorly understood due to a lack of experimental approaches to analyze these processes. Here, we present an in vitro system to silence translation in purified mitochondria. In vitro import of chemically synthesized precursor-morpholino hybrids allows us to target translation of individual mitochondrial mRNAs. By applying this approach, we conclude that the bicistronic, overlapping ATP8/ATP6 transcript is translated through a single ribosome/mRNA engagement. We show that recruitment of COX1 assembly factors to translating ribosomes depends on nascent chain formation. By defining mRNA-specific interactomes for COX1 and COX2, we reveal an unexpected function of the cytosolic oncofetal IGF2BP1, an RNA-binding protein, in mitochondrial translation. Our data provide insight into mitochondrial translation and innovative strategies to investigate mitochondrial gene expression."],["dc.identifier.doi","10.1016/j.cell.2021.09.033"],["dc.identifier.pii","S0092867421011168"],["dc.identifier.pmid","34672953"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/94777"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/355"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/161"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-478"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation.issn","0092-8674"],["dc.relation.workinggroup","RG M. Bohnsack (Molecular Biology)"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.relation.workinggroup","RG Richter-Dennerlein (Mitoribosome Assembly)"],["dc.relation.workinggroup","RG Urlaub (Bioanalytische Massenspektrometrie)"],["dc.rights","CC BY 4.0"],["dc.title","An in vitro system to silence mitochondrial gene expression"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC