Options
Kerschensteiner, Martin
Loading...
Preferred name
Kerschensteiner, Martin
Official Name
Kerschensteiner, Martin
Alternative Name
Kerschensteiner, M.
Now showing 1 - 3 of 3
2020Journal Article Research Paper [["dc.bibliographiccitation.firstpage","4901"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Snaidero, Nicolas"],["dc.contributor.author","Schifferer, Martina"],["dc.contributor.author","Mezydlo, Aleksandra"],["dc.contributor.author","Zalc, Bernard"],["dc.contributor.author","Kerschensteiner, Martin"],["dc.contributor.author","Misgeld, Thomas"],["dc.date.accessioned","2022-08-18T13:29:08Z"],["dc.date.available","2022-08-18T13:29:08Z"],["dc.date.issued","2020"],["dc.description.abstract","Myelin, rather than being a static insulator of axons, is emerging as an active participant in circuit plasticity. This requires precise regulation of oligodendrocyte numbers and myelination patterns. Here, by devising a laser ablation approach of single oligodendrocytes, followed by in vivo imaging and correlated ultrastructural reconstructions, we report that in mouse cortex demyelination as subtle as the loss of a single oligodendrocyte can trigger robust cell replacement and remyelination timed by myelin breakdown. This results in reliable reestablishment of the original myelin pattern along continuously myelinated axons, while in parallel, patchy isolated internodes emerge on previously unmyelinated axons. Therefore, in mammalian cortex, internodes along partially myelinated cortical axons are typically not reestablished, suggesting that the cues that guide patchy myelination are not preserved through cycles of de- and remyelination. In contrast, myelin sheaths forming continuous patterns show remarkable homeostatic resilience and remyelinate with single axon precision."],["dc.identifier.doi","10.1038/s41467-020-18632-0"],["dc.identifier.pmid","32994410"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/113004"],["dc.identifier.url","https://rdp.sfb274.de/literature/publications/7"],["dc.language.iso","en"],["dc.relation","TRR 274: Checkpoints of Central Nervous System Recovery"],["dc.relation","TRR 274 | B02: Inflammatory neurodegeneration and repair mechanisms in childhood onset autoimmune and neurometabolic demyelinating CNS disease"],["dc.relation","TRR 274 | C02: In vivo detection and targeting of calcium clearance and axonal membrane repair after acute CNS insults"],["dc.relation","TRR 274 | C05: Checkpoints for circuit integration of nascent neurons in the injured brain"],["dc.relation","TRR 274 | Z01: Bioimaging Platform"],["dc.relation.issn","2041-1723"],["dc.relation.workinggroup","RG Kerschensteiner (Neuroimmune Interactions)"],["dc.relation.workinggroup","RG Misgeld"],["dc.relation.workinggroup","RG Schifferer"],["dc.title","Myelin replacement triggered by single-cell demyelination in mouse cortex"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2020Journal Article Research Paper [["dc.bibliographiccitation.artnumber","100232"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","STAR Protocols"],["dc.bibliographiccitation.volume","1"],["dc.contributor.author","Kislinger, Georg"],["dc.contributor.author","Gnägi, Helmut"],["dc.contributor.author","Kerschensteiner, Martin"],["dc.contributor.author","Simons, Mikael"],["dc.contributor.author","Misgeld, Thomas"],["dc.contributor.author","Schifferer, Martina"],["dc.date.accessioned","2022-08-19T06:32:51Z"],["dc.date.available","2022-08-19T06:32:51Z"],["dc.date.issued","2020"],["dc.description.abstract","Here, we describe a detailed workflow for ATUM-FIB microscopy, a hybrid method that combines serial-sectioning scanning electron microscopy (SEM) with focused ion beam SEM (FIB-SEM). This detailed protocol is optimized for mouse cortex samples. The main processing steps include the generation of semi-thick sections from sequentially cured resin blocks using a heated microtomy approach. We demonstrate the different imaging modalities, including serial light and electron microscopy for target recognition and FIB-SEM for isotropic imaging of regions of interest. For complete details on the use and execution of this protocol, please refer to Kislinger et al. (2020)."],["dc.identifier.doi","10.1016/j.xpro.2020.100232"],["dc.identifier.pmid","33377119"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/113013"],["dc.identifier.url","https://rdp.sfb274.de/literature/publications/33"],["dc.language.iso","en"],["dc.relation","TRR 274: Checkpoints of Central Nervous System Recovery"],["dc.relation","TRR 274 | B03: Checkpoints of recovery after primary astrocytic lesions in neuromyelitis optica and related animal models"],["dc.relation","TRR 274 | C02: In vivo detection and targeting of calcium clearance and axonal membrane repair after acute CNS insults"],["dc.relation","TRR 274 | Z01: Bioimaging Platform"],["dc.relation.eissn","2666-1667"],["dc.relation.workinggroup","RG Kerschensteiner (Neuroimmune Interactions)"],["dc.relation.workinggroup","RG Misgeld"],["dc.relation.workinggroup","RG Schifferer"],["dc.relation.workinggroup","RG Simons (The Biology of Glia in Development and Disease)"],["dc.title","ATUM-FIB microscopy for targeting and multiscale imaging of rare events in mouse cortex"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2020-07-24Journal Article Research Paper [["dc.bibliographiccitation.artnumber","101290"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","iScience"],["dc.bibliographiccitation.volume","23"],["dc.contributor.author","Kislinger, Georg"],["dc.contributor.author","Gnägi, Helmut"],["dc.contributor.author","Kerschensteiner, Martin"],["dc.contributor.author","Simons, Mikael"],["dc.contributor.author","Misgeld, Thomas"],["dc.contributor.author","Schifferer, Martina"],["dc.date.accessioned","2022-08-18T13:58:23Z"],["dc.date.available","2022-08-18T13:58:23Z"],["dc.date.issued","2020-07-24"],["dc.description.abstract","Volume electron microscopy enables the ultrastructural analysis of biological tissue. Currently, the techniques involving ultramicrotomy (ATUM, ssTEM) allow large fields of view but afford only limited z-resolution, whereas ion beam-milling approaches (FIB-SEM) yield isotropic voxels but are restricted in volume size. Now we present a hybrid method, named ATUM-FIB, which combines the advantages of both approaches. ATUM-FIB is based on serial sectioning of tissue into \"semithick\" (2-10 μm) sections collected onto tape. Serial light and electron microscopy allows the identification of regions of interest that are then directly accessible for targeted FIB-SEM. The set of semithick sections thus represents a tissue \"library\" which provides three-dimensional context information that can be probed \"on demand\" by local high-resolution analysis. We demonstrate the potential of this technique to reveal the ultrastructure of rare but pathologically important events by identifying microglia contact sites with amyloid plaques in a mouse model of familial Alzheimer's disease."],["dc.identifier.doi","10.1016/j.isci.2020.101290"],["dc.identifier.pmid","32622266"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/113006"],["dc.identifier.url","https://rdp.sfb274.de/literature/publications/15"],["dc.language.iso","en"],["dc.relation","TRR 274: Checkpoints of Central Nervous System Recovery"],["dc.relation","TRR 274 | B03: Checkpoints of recovery after primary astrocytic lesions in neuromyelitis optica and related animal models"],["dc.relation","TRR 274 | C02: In vivo detection and targeting of calcium clearance and axonal membrane repair after acute CNS insults"],["dc.relation","TRR 274 | Z01: Bioimaging Platform"],["dc.relation.eissn","2589-0042"],["dc.relation.workinggroup","RG Kerschensteiner (Neuroimmune Interactions)"],["dc.relation.workinggroup","RG Misgeld"],["dc.relation.workinggroup","RG Schifferer"],["dc.relation.workinggroup","RG Simons (The Biology of Glia in Development and Disease)"],["dc.title","Multiscale ATUM-FIB Microscopy Enables Targeted Ultrastructural Analysis at Isotropic Resolution"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC