Options
Riedel, Dietmar
Loading...
Preferred name
Riedel, Dietmar
Official Name
Riedel, Dietmar
Alternative Name
Riedel, D.
Main Affiliation
Now showing 1 - 10 of 54
2004Journal Article [["dc.bibliographiccitation.firstpage","2858"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Proceedings of the National Academy of Sciences"],["dc.bibliographiccitation.lastpage","2863"],["dc.bibliographiccitation.volume","101"],["dc.contributor.author","Schuette, C. G."],["dc.contributor.author","Hatsuzawa, K."],["dc.contributor.author","Margittai, M."],["dc.contributor.author","Stein, A."],["dc.contributor.author","Riedel, D."],["dc.contributor.author","Kuster, P."],["dc.contributor.author","Konig, M."],["dc.contributor.author","Seidel, C."],["dc.contributor.author","Jahn, R."],["dc.date.accessioned","2021-06-01T10:51:03Z"],["dc.date.available","2021-06-01T10:51:03Z"],["dc.date.issued","2004"],["dc.identifier.doi","10.1073/pnas.0400044101"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/86875"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.relation.eissn","1091-6490"],["dc.relation.issn","0027-8424"],["dc.title","Determinants of liposome fusion mediated by synaptic SNARE proteins"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2009Journal Article Research Paper [["dc.bibliographiccitation.firstpage","444"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Nature Neuroscience"],["dc.bibliographiccitation.lastpage","453"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Meyer, Alexander C."],["dc.contributor.author","Frank, Thomas"],["dc.contributor.author","Khimich, Darina"],["dc.contributor.author","Hoch, Gerhard"],["dc.contributor.author","Riedel, Dietmar"],["dc.contributor.author","Chapochnikov, Nikolai M."],["dc.contributor.author","Yarin, Yury M."],["dc.contributor.author","Harke, Benjamin"],["dc.contributor.author","Hell, Stefan"],["dc.contributor.author","Egner, Alexander"],["dc.contributor.author","Moser, Tobias"],["dc.date.accessioned","2017-09-07T11:47:30Z"],["dc.date.available","2017-09-07T11:47:30Z"],["dc.date.issued","2009"],["dc.description.abstract","Cochlear inner hair cells (IHCs) transmit acoustic information to spiral ganglion neurons through ribbon synapses. Here we have used morphological and physiological techniques to ask whether synaptic mechanisms differ along the tonotopic axis and within IHCs in the mouse cochlea. We show that the number of ribbon synapses per IHC peaks where the cochlea is most sensitive to sound. Exocytosis, measured as membrane capacitance changes, scaled with synapse number when comparing apical and midcochlear IHCs. Synapses were distributed in the subnuclear portion of IHCs. High-resolution imaging of IHC synapses provided insights into presynaptic Ca2+ channel clusters and Ca2+ signals, synaptic ribbons and postsynaptic glutamate receptor clusters and revealed subtle differences in their average properties along the tonotopic axis. However, we observed substantial variability for presynaptic Ca2+ signals, even within individual IHCs, providing a candidate presynaptic mechanism for the divergent dynamics of spiral ganglion neuron spiking."],["dc.identifier.doi","10.1038/nn.2293"],["dc.identifier.gro","3143132"],["dc.identifier.isi","000264563100019"],["dc.identifier.pmid","19270686"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/612"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1097-6256"],["dc.title","Tuning of synapse number, structure and function in the cochlea"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2010Journal Article Research Paper [["dc.bibliographiccitation.firstpage","606"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Microscopy research and technique"],["dc.bibliographiccitation.lastpage","617"],["dc.bibliographiccitation.volume","73"],["dc.contributor.author","Geumann, Ulf"],["dc.contributor.author","Schaefer, Christina"],["dc.contributor.author","Riedel, Dietmar"],["dc.contributor.author","Jahn, Reinhard"],["dc.contributor.author","Rizzoli, Silvio"],["dc.date.accessioned","2017-09-07T11:46:02Z"],["dc.date.available","2017-09-07T11:46:02Z"],["dc.date.issued","2010"],["dc.description.abstract","In the plasma membrane, membrane proteins are frequently organized in microdomains that are stabilized both by protein-protein and protein-lipid interactions, with the membrane lipid cholesterol being instrumental for microdomain stability. However, it is unclear whether such microdomains persist during endocytotic membrane trafficking. We used stimulated emission-depletion microscopy to investigate the domain structure of the endosomes. We developed a semiautomatic method for counting the individual domains, an approach that we have validated by immunoelectron microscopy. We found that in endosomes derived from neuroendocrine PC12 cells synaptophysin and several SNARE proteins are organized in microdomains. Cholesterol depletion by methyl-beta-cyclodextrin disintegrates most of the domains. Interestingly, no change in the frequency of microdomains was observed when endosomes were fused with protein-free liposomes of similar size (in what constitutes a novel approach in modifying acutely the lipid composition of organelles), regardless of whether the membrane lipid composition of the liposomes was similar or very different from that of the endosomes. Similarly, Rab depletion from the endosome membranes left the domain structure unaffected. Furthermore, labeled exogenous protein, introduced into endosomes by liposome fusion, equilibrated with the corresponding microdomains. We conclude that synaptic membrane proteins are organized in stable but dynamic clusters within endosomes, which are likely to persist during membrane recycling. Microsc. Res. Tech. 73:606-617, 2010. (C) 2009 Wiley-Liss, Inc."],["dc.identifier.doi","10.1002/jemt.20800"],["dc.identifier.gro","3142915"],["dc.identifier.isi","000278641200004"],["dc.identifier.pmid","19937745"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/372"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Wiley-liss"],["dc.relation.issn","1059-910X"],["dc.title","Synaptic Membrane Proteins Form Stable Microdomains in Early Endosomes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2016Book Chapter [["dc.bibliographiccitation.firstpage","167"],["dc.bibliographiccitation.lastpage","178"],["dc.bibliographiccitation.seriesnr","1457"],["dc.contributor.author","Kanagaraj, Palsamy"],["dc.contributor.author","Riedel, Dietmar"],["dc.contributor.author","Dosch, Roland"],["dc.contributor.editor","Nezis, Ioannis P."],["dc.date.accessioned","2021-06-02T10:44:24Z"],["dc.date.available","2021-06-02T10:44:24Z"],["dc.date.issued","2016"],["dc.identifier.doi","10.1007/978-1-4939-3795-0_12"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/87028"],["dc.notes.intern","DOI-Import GROB-425"],["dc.publisher","Springer New York"],["dc.publisher.place","New York, NY"],["dc.relation.crisseries","Methods in Molecular Biology"],["dc.relation.eisbn","978-1-4939-3795-0"],["dc.relation.isbn","978-1-4939-3793-6"],["dc.relation.ispartof","Methods in Molecular Biology"],["dc.relation.ispartof","Oogenesis : Methods and Protocols"],["dc.relation.ispartofseries","Methods in Molecular Biology; 1457"],["dc.title","High-Pressure Freezing Electron Microscopy of Zebrafish Oocytes"],["dc.type","book_chapter"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2007Journal Article Research Paper [["dc.bibliographiccitation.firstpage","12933"],["dc.bibliographiccitation.issue","47"],["dc.bibliographiccitation.journal","The Journal of neuroscience"],["dc.bibliographiccitation.lastpage","12944"],["dc.bibliographiccitation.volume","27"],["dc.contributor.author","Neef, Andreas"],["dc.contributor.author","Khimich, Darina"],["dc.contributor.author","Pirih, Primoz"],["dc.contributor.author","Riedel, Dietmar"],["dc.contributor.author","Wolf, Fred"],["dc.contributor.author","Moser, Tobias"],["dc.date.accessioned","2017-09-07T11:49:23Z"],["dc.date.available","2017-09-07T11:49:23Z"],["dc.date.issued","2007"],["dc.description.abstract","Hearing relies on faithful synaptic transmission at the ribbon synapse of cochlear inner hair cells (IHCs). Postsynaptic recordings from this synapse in prehearing animals had delivered strong indications for synchronized release of several vesicles. The underlying mechanism, however, remains unclear. Here, we used presynaptic membrane capacitance measurements to test whether IHCs release vesicles in a statistically independent or dependent ( coordinated) manner. Exocytic changes of membrane capacitance (Delta C-m) were repeatedly stimulated in IHCs of prehearing and hearing mice by short depolarizations to preferentially recruit the readily releasable pool of synaptic vesicles. A compound Poisson model was devised to describe hair cell exocytosis and to test the analysis. From the trial-to-trial fluctuations of the Delta C-m we were able to estimate the apparent size of the elementary fusion event (C-app) at the hair cell synapse to be 96-223 aF in immature and 55-149 aF in mature IHCs. We also approximated the single vesicle capacitance in IHCs by measurements of synaptic vesicle diameters in electron micrographs. The results (immature, 48 aF; mature, 45 aF) were lower than the respective Capp estimates. This indicates that coordinated exocytosis of synaptic vesicles occurs at both immature and mature hair cell synapses. Approximately 35% of the release events in mature IHCs and similar to 50% in immature IHCs were predicted to involve coordinated fusion, when assuming a geometric distribution of elementary sizes. In summary, our presynaptic measurements indicate coordinated exocytosis but argue for a lesser degree of coordination than suggested by postsynaptic recordings."],["dc.identifier.doi","10.1523/JNEUROSCI.1996-07.2007"],["dc.identifier.gro","3143408"],["dc.identifier.isi","000251157200022"],["dc.identifier.pmid","18032667"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/919"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Soc Neuroscience"],["dc.relation.issn","0270-6474"],["dc.title","Probing the mechanism of exocytosis at the hair cell ribbon synapse"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2008Journal Article [["dc.bibliographiccitation.firstpage","5046"],["dc.bibliographiccitation.issue","27"],["dc.bibliographiccitation.journal","Angewandte Chemie International Edition"],["dc.bibliographiccitation.lastpage","5048"],["dc.bibliographiccitation.volume","47"],["dc.contributor.author","Kim, Hai-Young"],["dc.contributor.author","Cho, Min-Kyu"],["dc.contributor.author","Riedel, Dietmar"],["dc.contributor.author","Fernandez, Claudio O."],["dc.contributor.author","Zweckstetter, Markus"],["dc.date.accessioned","2021-06-01T10:49:25Z"],["dc.date.available","2021-06-01T10:49:25Z"],["dc.date.issued","2008"],["dc.identifier.doi","10.1002/anie.200800342"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/86282"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.relation.eissn","1521-3773"],["dc.relation.issn","1433-7851"],["dc.title","Dissociation of Amyloid Fibrils of α-Synuclein in Supercooled Water"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2011Journal Article Research Paper [["dc.bibliographiccitation.firstpage","805"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","Nature Structural & Molecular Biology"],["dc.bibliographiccitation.lastpage","U82"],["dc.bibliographiccitation.volume","18"],["dc.contributor.author","van den Bogaart, Geert"],["dc.contributor.author","Thutupalli, Shashi"],["dc.contributor.author","Risselada, J. H."],["dc.contributor.author","Meyenberg, Karsten"],["dc.contributor.author","Holt, Matthew"],["dc.contributor.author","Riedel, Dietmar"],["dc.contributor.author","Diederichsen, Ulf"],["dc.contributor.author","Herminghaus, Stephan"],["dc.contributor.author","Grubmüller, Helmut"],["dc.contributor.author","Jahn, Reinhard"],["dc.date.accessioned","2017-09-07T11:44:10Z"],["dc.date.available","2017-09-07T11:44:10Z"],["dc.date.issued","2011"],["dc.description.abstract","Synaptotagmin-1 triggers Ca2+-sensitive, rapid neurotransmitter release by promoting interactions between SNARE proteins on synaptic vesicles and the plasma membrane. How synaptotagmin-1 promotes this interaction is unclear, and the massive increase in membrane fusion efficiency of Ca2+-bound synaptotagmin-1 has not been reproduced in vitro. However, previous experiments have been performed at relatively high salt concentrations, screening potentially important electrostatic interactions. Using functional reconstitution in liposomes, we show here that at low ionic strength SNARE-mediated membrane fusion becomes strictly dependent on both Ca2+ and synaptotagmin-1. Under these conditions, synaptotagmin-1 functions as a distance regulator that tethers the liposomes too far from the plasma membrane for SNARE nucleation in the absence of Ca2+, but while bringing the liposomes close enough for membrane fusion in the presence of Ca2+. These results may explain how the relatively weak electrostatic interactions between synaptotagmin-1 and membranes substantially accelerate fusion."],["dc.identifier.doi","10.1038/nsmb.2061"],["dc.identifier.gro","3142704"],["dc.identifier.isi","000292507500009"],["dc.identifier.pmid","21642968"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/138"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1545-9993"],["dc.title","Synaptotagmin-1 may be a distance regulator acting upstream of SNARE nucleation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2022Preprint [["dc.contributor.author","Wu, Zhixiao"],["dc.contributor.author","Berlemann, Lena A."],["dc.contributor.author","Bader, Verian"],["dc.contributor.author","Sehr, Dominik"],["dc.contributor.author","Eilers, Eva"],["dc.contributor.author","Covallero, Alberto"],["dc.contributor.author","Meschede, Jens"],["dc.contributor.author","Angersbach, Lena"],["dc.contributor.author","Showkat, Cathrin"],["dc.contributor.author","Michaelis, Jonas B."],["dc.contributor.author","Münch, Christian"],["dc.contributor.author","Rieger, Bettina"],["dc.contributor.author","Namgaladze, Dmitry"],["dc.contributor.author","Herrera, Maria Georgina"],["dc.contributor.author","Fiesel, Fabienne C."],["dc.contributor.author","Springer, Wolfdieter"],["dc.contributor.author","Mendes, Marta"],["dc.contributor.author","Stepien, Jennifer"],["dc.contributor.author","Barkovits, Katalin"],["dc.contributor.author","Marcus, Katrin"],["dc.contributor.author","Sickmann, Albert"],["dc.contributor.author","Dittmar, Gunnar"],["dc.contributor.author","Busch, Karin B."],["dc.contributor.author","Riedel, Dietmar"],["dc.contributor.author","Brini, Marisa"],["dc.contributor.author","Tatzelt, Jörg"],["dc.contributor.author","Cali, Tito"],["dc.contributor.author","Winklhofer, Konstanze F."],["dc.date.accessioned","2022-09-02T08:27:54Z"],["dc.date.available","2022-09-02T08:27:54Z"],["dc.date.issued","2022"],["dc.identifier.doi","10.1101/2022.05.27.493704"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/114010"],["dc.identifier.url","https://for2848.gwdguser.de/literature/publications/31"],["dc.relation","FOR 2848: Architektur und Heterogenität der inneren mitochondrialen Membran auf der Nanoskala"],["dc.relation","FOR 2848 | P07: Einfluss von Signalwegen der zellulären Stressantwort auf die mitochondriale innere Membran"],["dc.relation.workinggroup","RG K. Busch (Cellular Bioenergetics)"],["dc.relation.workinggroup","RG Winklhofer"],["dc.title","LUBAC assembles a signaling platform at mitochondria for signal amplification and shuttling of NF-ĸB to the nucleus"],["dc.type","preprint"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI2018Journal Article [["dc.bibliographiccitation.firstpage","1036"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Biophysical Journal"],["dc.bibliographiccitation.lastpage","1045"],["dc.bibliographiccitation.volume","114"],["dc.contributor.author","Valiente-Gabioud, Ariel A."],["dc.contributor.author","Riedel, Dietmar"],["dc.contributor.author","Outeiro, Tiago F."],["dc.contributor.author","Menacho-Márquez, Mauricio A."],["dc.contributor.author","Griesinger, Christian"],["dc.contributor.author","Fernández, Claudio O."],["dc.date.accessioned","2020-12-10T14:22:45Z"],["dc.date.available","2020-12-10T14:22:45Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1016/j.bpj.2018.01.003"],["dc.identifier.issn","0006-3495"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/71718"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Binding Modes of Phthalocyanines to Amyloid β Peptide and Their Effects on Amyloid Fibril Formation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2010Journal Article [["dc.bibliographiccitation.firstpage","611"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Yeast"],["dc.bibliographiccitation.lastpage","624"],["dc.bibliographiccitation.volume","27"],["dc.contributor.author","de Boer, Albert D."],["dc.contributor.author","de Groot, Piet W. J."],["dc.contributor.author","Weindl, Guenther"],["dc.contributor.author","Schaller, Martin"],["dc.contributor.author","Riedel, Dietmar"],["dc.contributor.author","Diez-Orejas, Rosalia"],["dc.contributor.author","Klis, Frans M."],["dc.contributor.author","de Koster, Chris G."],["dc.contributor.author","Dekker, Henk L."],["dc.contributor.author","Gross, Uwe"],["dc.contributor.author","Bader, Oliver"],["dc.contributor.author","Weig, Michael S."],["dc.date.accessioned","2018-11-07T08:41:15Z"],["dc.date.available","2018-11-07T08:41:15Z"],["dc.date.issued","2010"],["dc.description.abstract","The glycosylphosphatidylinositol-modified protein Rhd3/Pga29 of the human pathogen Candida albicans belongs to a family of cell wall proteins that are widespread among Candida species but are not found in other fungi. Pga29 is covalently linked to the beta-1,3-glucan framework of the cell wall via beta-1,6-glucan. It is a small and abundant O-glycosylated protein and requires the protein-O-mannosyl transferase Pmt1 for glycosylation. Furthermore, Pga29 is strongly expressed in yeast cells but is downregulated in hyphae. Removal of the PGA29 gene in C. albicans leads to a significant reduction of cell wall mannan; however, Pga29 does not seem to have a major role in maintaining cell wall integrity. In addition, adhesion capacity and hyphae formation appear normal in pga29 deletion mutants. Importantly, the pga29 deletion mutant is less virulent, and infection of reconstituted human epithelium with the pga29 mutant results in a diminished induction of proinfiammatory cytokines, such as GM-CSF, TNF, IL-6 and IL-8. We propose that the reduced virulence of the pga29 mutant is a consequence of altered surface properties, resulting in altered fungal recognition. (C) Copyright 2010 John Wiley & Sons, Ltd."],["dc.identifier.doi","10.1002/yea.1790"],["dc.identifier.isi","000281227000017"],["dc.identifier.pmid","20533408"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/19423"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.relation.issn","0749-503X"],["dc.title","The Candida albicans cell wall protein Rhd3/Pga29 is abundant in the yeast form and contributes to virulence"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS