Now showing 1 - 10 of 17
  • 2019Journal Article
    [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Strohäker, Timo"],["dc.contributor.author","Jung, Byung Chul"],["dc.contributor.author","Liou, Shu-Hao"],["dc.contributor.author","Fernandez, Claudio O."],["dc.contributor.author","Riedel, Dietmar"],["dc.contributor.author","Becker, Stefan"],["dc.contributor.author","Halliday, Glenda M."],["dc.contributor.author","Bennati, Marina"],["dc.contributor.author","Kim, Woojin S."],["dc.contributor.author","Lee, Seung-Jae"],["dc.contributor.author","Zweckstetter, Markus"],["dc.date.accessioned","2020-12-10T18:09:52Z"],["dc.date.available","2020-12-10T18:09:52Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1038/s41467-019-13564-w"],["dc.identifier.eissn","2041-1723"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/17027"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/73784"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.intern","Merged from goescholar"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Structural heterogeneity of α-synuclein fibrils amplified from patient brain extracts"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","eabg2174"],["dc.bibliographiccitation.issue","20"],["dc.bibliographiccitation.journal","Science Advances"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Antonschmidt, Leif"],["dc.contributor.author","Dervişoğlu, Rıza"],["dc.contributor.author","Sant, Vrinda"],["dc.contributor.author","Tekwani Movellan, Kumar"],["dc.contributor.author","Mey, Ingo P."],["dc.contributor.author","Riedel, Dietmar"],["dc.contributor.author","Steinem, Claudia"],["dc.contributor.author","Becker, Stefan T."],["dc.contributor.author","Andreas, Loren B."],["dc.contributor.author","Griesinger, Christian"],["dc.date.accessioned","2021-06-01T09:42:06Z"],["dc.date.available","2021-06-01T09:42:06Z"],["dc.date.issued","2021"],["dc.description.abstract","Recent advances in the structural biology of disease-relevant α-synuclein fibrils have revealed a variety of structures, yet little is known about the process of fibril aggregate formation. Characterization of intermediate species that form during aggregation is crucial; however, this has proven very challenging because of their transient nature, heterogeneity, and low population. Here, we investigate the aggregation of α-synuclein bound to negatively charged phospholipid small unilamellar vesicles. Through a combination of kinetic and structural studies, we identify key time points in the aggregation process that enable targeted isolation of prefibrillar and early fibrillar intermediates. By using solid-state nuclear magnetic resonance, we show the gradual buildup of structural features in an α-synuclein fibril filament, revealing a segmental folding process. We identify distinct membrane-binding domains in α-synuclein aggregates, and the combined data are used to present a comprehensive mechanism of the folding of α-synuclein on lipid membranes."],["dc.identifier.doi","10.1126/sciadv.abg2174"],["dc.identifier.pmid","33990334"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/85143"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/259"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.eissn","2375-2548"],["dc.relation.workinggroup","RG Griesinger"],["dc.relation.workinggroup","RG Steinem (Biomolecular Chemistry)"],["dc.rights","CC BY-NC 4.0"],["dc.title","Insights into the molecular mechanism of amyloid filament formation: Segmental folding of α-synuclein on lipid membranes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2012Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","247"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Molecular Biology of the Cell"],["dc.bibliographiccitation.lastpage","257"],["dc.bibliographiccitation.volume","23"],["dc.contributor.author","Alkhaja, Alwaleed K."],["dc.contributor.author","Jans, Daniel C."],["dc.contributor.author","Nikolov, Miroslav"],["dc.contributor.author","Vukotic, Milena"],["dc.contributor.author","Lytovchenko, Oleksandr"],["dc.contributor.author","Ludewig, Fabian"],["dc.contributor.author","Schliebs, Wolfgang"],["dc.contributor.author","Riedel, Dietmar"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Deckers, Markus"],["dc.date.accessioned","2017-09-07T11:49:01Z"],["dc.date.available","2017-09-07T11:49:01Z"],["dc.date.issued","2012"],["dc.description.abstract","The inner membrane of mitochondria is especially protein rich and displays a unique morphology characterized by large invaginations, the mitochondrial cristae, and the inner boundary membrane, which is in proximity to the outer membrane. Mitochondrial inner membrane proteins appear to be not evenly distributed in the inner membrane, but instead organize into functionally distinct subcompartments. It is unknown how the organization of the inner membrane is achieved. We identified MINOS1/MIO10 (C1orf151/YCL057C-A), a conserved mitochondrial inner membrane protein. mio10-mutant yeast cells are affected in growth on nonfermentable carbon sources and exhibit altered mitochondrial morphology. At the ultrastructural level, mutant mitochondria display loss of inner membrane organization. Proteomic analyses reveal MINOS1/Mio10 as a novel constituent of Mitofilin/Fcj1 complexes in human and yeast mitochondria. Thus our analyses reveal new insight into the composition of the mitochondrial inner membrane organizing machinery."],["dc.identifier.doi","10.1091/mbc.E11-09-0774"],["dc.identifier.gro","3142588"],["dc.identifier.isi","000299108000002"],["dc.identifier.pmid","22114354"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/7823"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/8955"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1059-1524"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","MINOS1 is a conserved component of mitofilin complexes and required for mitochondrial function and cristae organization"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","e0240768"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","PLoS One"],["dc.bibliographiccitation.volume","16"],["dc.contributor.author","Lange, Felix"],["dc.contributor.author","Agüi-Gonzalez, Paola"],["dc.contributor.author","Riedel, Dietmar"],["dc.contributor.author","Phan, Nhu T. N."],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Rizzoli, Silvio O."],["dc.date.accessioned","2021-08-12T07:45:38Z"],["dc.date.available","2021-08-12T07:45:38Z"],["dc.date.issued","2021"],["dc.description.abstract","Electron microscopy (EM) has been employed for decades to analyze cell structure. To also analyze the positions and functions of specific proteins, one typically relies on immuno-EM or on a correlation with fluorescence microscopy, in the form of correlated light and electron microscopy (CLEM). Nevertheless, neither of these procedures is able to also address the isotopic composition of cells. To solve this, a correlation with secondary ion mass spectrometry (SIMS) would be necessary. SIMS has been correlated in the past to EM or to fluorescence microscopy in biological samples, but not to CLEM. We achieved this here, using a protocol based on transmission EM, conventional epifluorescence microscopy and nanoSIMS. The protocol is easily applied, and enables the use of all three technologies at high performance parameters. We suggest that CLEM-SIMS will provide substantial information that is currently beyond the scope of conventional correlative approaches."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2021"],["dc.identifier.doi","10.1371/journal.pone.0240768"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/88511"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-448"],["dc.relation.eissn","1932-6203"],["dc.rights","CC BY 4.0"],["dc.title","Correlative fluorescence microscopy, transmission electron microscopy and secondary ion mass spectrometry (CLEM-SIMS) for cellular imaging"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2006Journal Article
    [["dc.bibliographiccitation.firstpage","10599"],["dc.bibliographiccitation.issue","41"],["dc.bibliographiccitation.journal","Journal of Neuroscience"],["dc.bibliographiccitation.lastpage","10613"],["dc.bibliographiccitation.volume","26"],["dc.contributor.author","Dudanova, Irina"],["dc.contributor.author","Sedej, Simon"],["dc.contributor.author","Ahmad, Mohiuddin"],["dc.contributor.author","Masius, Henriette"],["dc.contributor.author","Sargsyan, Vardanush"],["dc.contributor.author","Zhang, W."],["dc.contributor.author","Riedel, Dietmar"],["dc.contributor.author","Angenstein, Frank"],["dc.contributor.author","Schild, Detlev"],["dc.contributor.author","Rupnik, Marjan"],["dc.contributor.author","Missler, Markus"],["dc.date.accessioned","2018-11-07T09:06:58Z"],["dc.date.available","2018-11-07T09:06:58Z"],["dc.date.issued","2006"],["dc.description.abstract","alpha-Neurexins constitute a family of neuronal cell surface molecules that are essential for efficient neurotransmission, because mice lacking two or all three alpha-neurexin genes show a severe reduction of synaptic release. Although analyses of alpha-neurexin knock-outs and transgenic rescue animals suggested an involvement of voltage-dependent Ca2+ channels, it remained unclear whether alpha-neurexins have a general role in Ca2+-dependent exocytosis and how they may affect Ca2+ channels. Here we show by membrane capacitance measurements from melanotrophs in acute pituitary gland slices that release from endocrine cells is diminished by > 50% in adult alpha-neurexin double knock-out and newborn triple knock-out mice. There is a reduction of the cell volume in mutant melanotrophs; however, no ultrastructural changes in size or intracellular distribution of the secretory granules were observed. Recordings of Ca2+ currents from melanotrophs, transfected human embryonic kidney cells, and brainstem neurons reveal that alpha-neurexins do not affect the activation or inactivation properties of Ca2+ channels directly but may be responsible for coupling them to release-ready vesicles and metabotropic receptors. Our data support a general and essential role for alpha-neurexins in Ca2+-triggered exocytosis that is similarly important for secretion from neurons and endocrine cells."],["dc.identifier.doi","10.1523/JNEUROSCI.1913-06.2006"],["dc.identifier.isi","000241192800034"],["dc.identifier.pmid","17035546"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/7751"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/25679"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Soc Neuroscience"],["dc.relation.issn","0270-6474"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Important contribution of alpha-neurexins to Ca2+-triggered exocytosis of secretory granules"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2019Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","9853"],["dc.bibliographiccitation.issue","20"],["dc.bibliographiccitation.journal","Proceedings of the National Academy of Sciences"],["dc.bibliographiccitation.lastpage","9858"],["dc.bibliographiccitation.volume","116"],["dc.contributor.author","Stoldt, Stefan"],["dc.contributor.author","Stephan, Till"],["dc.contributor.author","Jans, Daniel C."],["dc.contributor.author","Brüser, Christian"],["dc.contributor.author","Lange, Felix"],["dc.contributor.author","Keller-Findeisen, Jan"],["dc.contributor.author","Riedel, Dietmar"],["dc.contributor.author","Hell, Stefan W."],["dc.contributor.author","Jakobs, Stefan"],["dc.date.accessioned","2020-12-10T18:12:52Z"],["dc.date.available","2020-12-10T18:12:52Z"],["dc.date.issued","2019"],["dc.description.abstract","Mitochondria are tubular double-membrane organelles essential for eukaryotic life. They form extended networks and exhibit an intricate inner membrane architecture. The MICOS (mitochondrial contact site and cristae organizing system) complex, crucial for proper architecture of the mitochondrial inner membrane, is localized primarily at crista junctions. Harnessing superresolution fluorescence microscopy, we demonstrate that Mic60, a subunit of the MICOS complex, as well as several of its interaction partners are arranged into intricate patterns in human and yeast mitochondria, suggesting an ordered distribution of the crista junctions. We show that Mic60 forms clusters that are preferentially localized in the inner membrane at two opposing sides of the mitochondrial tubules so that they form extended opposing distribution bands. These Mic60 distribution bands can be twisted, resulting in a helical arrangement. Focused ion beam milling-scanning electron microscopy showed that in yeast the twisting of the opposing distribution bands is echoed by the folding of the inner membrane. We show that establishment of the Mic60 distribution bands is largely independent of the cristae morphology. We suggest that Mic60 is part of an extended multiprotein interaction network that scaffolds mitochondria."],["dc.identifier.doi","10.1073/pnas.1820364116"],["dc.identifier.pmid","31028145"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/74522"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/66"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P01: Untersuchung der Unterschiede in der Zusammensetzung, Funktion und Position von individuellen MICOS Komplexen in einzelnen Säugerzellen"],["dc.relation.workinggroup","RG Jakobs (Structure and Dynamics of Mitochondria)"],["dc.rights","CC BY-NC-ND 4.0"],["dc.title","Mic60 exhibits a coordinated clustered distribution along and across yeast and mammalian mitochondria"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2015Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","4222"],["dc.bibliographiccitation.issue","24"],["dc.bibliographiccitation.journal","Molecular and Cellular Biology"],["dc.bibliographiccitation.lastpage","4237"],["dc.bibliographiccitation.volume","35"],["dc.contributor.author","Sakowska, Paulina"],["dc.contributor.author","Jans, Daniel C."],["dc.contributor.author","Mohanraj, Karthik"],["dc.contributor.author","Riedel, Dietmar"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Chacinska, Agnieszka"],["dc.date.accessioned","2017-09-07T11:54:51Z"],["dc.date.available","2017-09-07T11:54:51Z"],["dc.date.issued","2015"],["dc.description.abstract","The function of mitochondria depends on the proper organization of mitochondrial membranes. The morphology of the inner membrane is regulated by the recently identified mitochondrial contact site and crista organizing system (MICOS) complex. MICOS mutants exhibit alterations in crista formation, leading to mitochondrial dysfunction. However, the mechanisms that underlie MICOS regulation remain poorly understood. MIC19, a peripheral protein of the inner membrane and component of the MICOS complex, was previously reported to be required for the proper function of MICOS in maintaining the architecture of the inner membrane. Here, we show that human and Saccharomyces cerevisiae MIC19 proteins undergo oxidation in mitochondria and require the mitochondrial intermembrane space assembly (MIA) pathway, which couples the oxidation and import of mitochondrial intermembrane space proteins for mitochondrial localization. Detailed analyses identified yeast Mic19 in two different redox forms. The form that contains an intramolecular disulfide bond is bound to Mic60 of the MICOS complex. Mic19 oxidation is not essential for its integration into the MICOS complex but plays a role in MICOS assembly and the maintenance of the proper inner membrane morphology. These findings suggest that Mic19 is a redox-dependent regulator of MICOS function."],["dc.identifier.doi","10.1128/MCB.00578-15"],["dc.identifier.gro","3141780"],["dc.identifier.isi","000365715500011"],["dc.identifier.pmid","26416881"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/12742"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/990"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1098-5549"],["dc.relation.issn","0270-7306"],["dc.rights","CC BY-NC-SA 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-sa/3.0"],["dc.title","The Oxidation Status of Mic19 Regulates MICOS Assembly"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2014Journal Article
    [["dc.bibliographiccitation.artnumber","e1004449"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","PLoS Genetics"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Kanagaraj, Palsamy"],["dc.contributor.author","Gautier-Stein, Amandine"],["dc.contributor.author","Riedel, Dietmar"],["dc.contributor.author","Schomburg, Christoph"],["dc.contributor.author","Cerda, Joan"],["dc.contributor.author","Vollack, Nadine"],["dc.contributor.author","Dosch, Roland"],["dc.date.accessioned","2018-11-07T09:39:10Z"],["dc.date.available","2018-11-07T09:39:10Z"],["dc.date.issued","2014"],["dc.description.abstract","During oogenesis, the egg prepares for fertilization and early embryogenesis. As a consequence, vesicle transport is very active during vitellogenesis, and oocytes are an outstanding system to study regulators of membrane trafficking. Here, we combine zebrafish genetics and the oocyte model to identify the molecular lesion underlying the zebrafish souffle (suf) mutation. We demonstrate that suf encodes the homolog of the Hereditary Spastic Paraplegia (HSP) gene SPASTIZIN (SPG15). We show that in zebrafish oocytes suf mutants accumulate Rab11b-positive vesicles, but trafficking of recycling endosomes is not affected. Instead, we detect Suf/Spastizin on cortical granules, which undergo regulated secretion. We demonstrate genetically that Suf is essential for granule maturation into secretion competent dense-core vesicles describing a novel role for Suf in vesicle maturation. Interestingly, in suf mutants immature, secretory precursors accumulate, because they fail to pinch-off Clathrin-coated buds. Moreover, pharmacological inhibition of the abscission regulator Dynamin leads to an accumulation of immature secretory granules and mimics the suf phenotype. Our results identify a novel regulator of secretory vesicle formation in the zebrafish oocyte. In addition, we describe an uncharacterized cellular mechanism for Suf/Spastizin activity during secretion, which raises the possibility of novel therapeutic avenues for HSP research."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2014"],["dc.identifier.doi","10.1371/journal.pgen.1004449"],["dc.identifier.isi","000338847700059"],["dc.identifier.pmid","24967841"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/10408"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/33220"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Public Library Science"],["dc.relation.issn","1553-7404"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Souffle/Spastizin Controls Secretory Vesicle Maturation during Zebrafish Oogenesis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2022Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","7749"],["dc.bibliographiccitation.issue","14"],["dc.bibliographiccitation.journal","International Journal of Molecular Sciences"],["dc.bibliographiccitation.volume","23"],["dc.contributor.affiliation","Wildung, Merit; 1Molecular & Experimental Pneumology Group, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, 37075 Gottingen, Germany; meritwildung@web.de (M.W.); cornelia.wiedwald@biontech.de (C.W.); heimerl.maren@mh-hannover.de (M.H.); lvolcea@gwdg.de (L.V.-H.); stefan.andreas@med.uni-goettingen.de (S.A.)"],["dc.contributor.affiliation","Herr, Christian; 3Department of Internal Medicine V, Saarland University, 66421 Homburg, Germany; christian.herr@uks.eu (C.H.); christoph.beisswenger@uks.eu (C.B.); m5.sekr@uks.eu (R.B.)"],["dc.contributor.affiliation","Riedel, Dietmar; 4Laboratory for Electron Microscopy, Max Planck Institute for Multidisciplinary Sciences, 37075 Goettingen, Germany; driedel@mpinat.mpg.de"],["dc.contributor.affiliation","Wiedwald, Cornelia; 1Molecular & Experimental Pneumology Group, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, 37075 Gottingen, Germany; meritwildung@web.de (M.W.); cornelia.wiedwald@biontech.de (C.W.); heimerl.maren@mh-hannover.de (M.H.); lvolcea@gwdg.de (L.V.-H.); stefan.andreas@med.uni-goettingen.de (S.A.)"],["dc.contributor.affiliation","Moiseenko, Alena; 5Immunology & Respiratory Department, Boehringer Ingelheim Pharma GmbH, 88400 Biberach an der Riss, Germany; alena.moiseenko@boehringer-ingelheim.com"],["dc.contributor.affiliation","Ramírez, Fidel; 6Global Computational Biology and Digital Sciences Department, Boehringer Ingelheim Pharma GmbH, 88400 Biberach an der Riss, Germany; fidel.ramirez@boehringer-ingelheim.com"],["dc.contributor.affiliation","Tasena, Hataitip; 7Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands; h.tasena@nus.edu.sg (H.T.); w.timens@umcg.nl (W.T.); c.a.brandsma@umcg.nl (C.-A.B.); h.i.heijink@umcg.nl (I.H.H.)"],["dc.contributor.affiliation","Heimerl, Maren; 1Molecular & Experimental Pneumology Group, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, 37075 Gottingen, Germany; meritwildung@web.de (M.W.); cornelia.wiedwald@biontech.de (C.W.); heimerl.maren@mh-hannover.de (M.H.); lvolcea@gwdg.de (L.V.-H.); stefan.andreas@med.uni-goettingen.de (S.A.)"],["dc.contributor.affiliation","Alevra, Mihai; 9Institute of Neuro- and Sensory Physiology, Goettingen University, 37073 Goettingen, Germany; malevra@gwdg.de"],["dc.contributor.affiliation","Movsisyan, Naira; 10Oncophysiology Group, Max Planck Institute for Multidisciplinary Sciences, 37075 Goettingen, Germany; nairamovsisian@gmail.com (N.M.); urrego.dianae@gmail.com (D.U.); pardo@mpinat.mpg.de (L.A.P.)"],["dc.contributor.affiliation","Schuldt, Maike; 2Molecular Oncology, University Medical Center Goettingen, 37077 Goettingen, Germany; maikeschuldt@web.de (M.S.); bernard.freytag@stud.uni-goettingen.de (B.F.)"],["dc.contributor.affiliation","Volceanov-Hahn, Larisa; 1Molecular & Experimental Pneumology Group, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, 37075 Gottingen, Germany; meritwildung@web.de (M.W.); cornelia.wiedwald@biontech.de (C.W.); heimerl.maren@mh-hannover.de (M.H.); lvolcea@gwdg.de (L.V.-H.); stefan.andreas@med.uni-goettingen.de (S.A.)"],["dc.contributor.affiliation","Provoost, Sharen; 11Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium; sharenprovoost@hotmail.com (S.P.); tania.maes@ugent.be (T.M.)"],["dc.contributor.affiliation","Nöthe-Menchen, Tabea; 12Department of General Pediatrics, University Hospital Muenster, 48149 Muenster, Germany; tabea.noethe-menchen@ukmuenster.de (T.N.-M.); julia.wallmeier@ukmuenster.de (J.W.)"],["dc.contributor.affiliation","Urrego, Diana; 10Oncophysiology Group, Max Planck Institute for Multidisciplinary Sciences, 37075 Goettingen, Germany; nairamovsisian@gmail.com (N.M.); urrego.dianae@gmail.com (D.U.); pardo@mpinat.mpg.de (L.A.P.)"],["dc.contributor.affiliation","Freytag, Bernard; 2Molecular Oncology, University Medical Center Goettingen, 37077 Goettingen, Germany; maikeschuldt@web.de (M.S.); bernard.freytag@stud.uni-goettingen.de (B.F.)"],["dc.contributor.affiliation","Wallmeier, Julia; 12Department of General Pediatrics, University Hospital Muenster, 48149 Muenster, Germany; tabea.noethe-menchen@ukmuenster.de (T.N.-M.); julia.wallmeier@ukmuenster.de (J.W.)"],["dc.contributor.affiliation","Beisswenger, Christoph; 3Department of Internal Medicine V, Saarland University, 66421 Homburg, Germany; christian.herr@uks.eu (C.H.); christoph.beisswenger@uks.eu (C.B.); m5.sekr@uks.eu (R.B.)"],["dc.contributor.affiliation","Bals, Robert; 3Department of Internal Medicine V, Saarland University, 66421 Homburg, Germany; christian.herr@uks.eu (C.H.); christoph.beisswenger@uks.eu (C.B.); m5.sekr@uks.eu (R.B.)"],["dc.contributor.affiliation","van den Berge, Maarten; 8Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands; m.van.den.berge@umcg.nl"],["dc.contributor.affiliation","Timens, Wim; 7Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands; h.tasena@nus.edu.sg (H.T.); w.timens@umcg.nl (W.T.); c.a.brandsma@umcg.nl (C.-A.B.); h.i.heijink@umcg.nl (I.H.H.)"],["dc.contributor.affiliation","Hiemstra, Pieter S.; 14Department of Pulmonology, Leiden University Medical Centre, 2333 Leiden, The Netherlands; p.s.hiemstra@lumc.nl"],["dc.contributor.affiliation","Brandsma, Corry-Anke; 7Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands; h.tasena@nus.edu.sg (H.T.); w.timens@umcg.nl (W.T.); c.a.brandsma@umcg.nl (C.-A.B.); h.i.heijink@umcg.nl (I.H.H.)"],["dc.contributor.affiliation","Maes, Tania; 11Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium; sharenprovoost@hotmail.com (S.P.); tania.maes@ugent.be (T.M.)"],["dc.contributor.affiliation","Andreas, Stefan; 1Molecular & Experimental Pneumology Group, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, 37075 Gottingen, Germany; meritwildung@web.de (M.W.); cornelia.wiedwald@biontech.de (C.W.); heimerl.maren@mh-hannover.de (M.H.); lvolcea@gwdg.de (L.V.-H.); stefan.andreas@med.uni-goettingen.de (S.A.)"],["dc.contributor.affiliation","Heijink, Irene H.; 7Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands; h.tasena@nus.edu.sg (H.T.); w.timens@umcg.nl (W.T.); c.a.brandsma@umcg.nl (C.-A.B.); h.i.heijink@umcg.nl (I.H.H.)"],["dc.contributor.affiliation","Pardo, Luis A.; 10Oncophysiology Group, Max Planck Institute for Multidisciplinary Sciences, 37075 Goettingen, Germany; nairamovsisian@gmail.com (N.M.); urrego.dianae@gmail.com (D.U.); pardo@mpinat.mpg.de (L.A.P.)"],["dc.contributor.affiliation","Lizé, Muriel; 1Molecular & Experimental Pneumology Group, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, 37075 Gottingen, Germany; meritwildung@web.de (M.W.); cornelia.wiedwald@biontech.de (C.W.); heimerl.maren@mh-hannover.de (M.H.); lvolcea@gwdg.de (L.V.-H.); stefan.andreas@med.uni-goettingen.de (S.A.)"],["dc.contributor.author","Wildung, Merit"],["dc.contributor.author","Herr, Christian"],["dc.contributor.author","Riedel, Dietmar"],["dc.contributor.author","Wiedwald, Cornelia"],["dc.contributor.author","Moiseenko, Alena"],["dc.contributor.author","Ramírez, Fidel"],["dc.contributor.author","Tasena, Hataitip"],["dc.contributor.author","Heimerl, Maren"],["dc.contributor.author","Alevra, Mihai"],["dc.contributor.author","Movsisyan, Naira"],["dc.contributor.author","Lizé, Muriel"],["dc.contributor.author","Schuldt, Maike"],["dc.contributor.author","Volceanov-Hahn, Larisa"],["dc.contributor.author","Provoost, Sharen"],["dc.contributor.author","Nöthe-Menchen, Tabea"],["dc.contributor.author","Urrego, Diana"],["dc.contributor.author","Freytag, Bernard"],["dc.contributor.author","Wallmeier, Julia"],["dc.contributor.author","Beisswenger, Christoph"],["dc.contributor.author","Bals, Robert"],["dc.contributor.author","van den Berge, Maarten"],["dc.contributor.author","Timens, Wim"],["dc.contributor.author","Hiemstra, Pieter S."],["dc.contributor.author","Brandsma, Corry-Anke"],["dc.contributor.author","Maes, Tania"],["dc.contributor.author","Andreas, Stefan"],["dc.contributor.author","Heijink, Irene H."],["dc.contributor.author","Pardo, Luis A."],["dc.date.accessioned","2022-09-01T09:51:11Z"],["dc.date.available","2022-09-01T09:51:11Z"],["dc.date.issued","2022"],["dc.date.updated","2022-09-03T22:18:07Z"],["dc.description.abstract","Airway mucociliary regeneration and function are key players for airway defense and are impaired in chronic obstructive pulmonary disease (COPD). Using transcriptome analysis in COPD-derived bronchial biopsies, we observed a positive correlation between cilia-related genes and microRNA-449 (miR449). In vitro, miR449 was strongly increased during airway epithelial mucociliary differentiation. In vivo, miR449 was upregulated during recovery from chemical or infective insults. miR0449−/− mice (both alleles are deleted) showed impaired ciliated epithelial regeneration after naphthalene and Haemophilus influenzae exposure, accompanied by more intense inflammation and emphysematous manifestations of COPD. The latter occurred spontaneously in aged miR449−/− mice. We identified Aurora kinase A and its effector target HDAC6 as key mediators in miR449-regulated ciliary homeostasis and epithelial regeneration. Aurora kinase A is downregulated upon miR449 overexpression in vitro and upregulated in miR449−/− mouse lungs. Accordingly, imaging studies showed profoundly altered cilia length and morphology accompanied by reduced mucociliary clearance. Pharmacological inhibition of HDAC6 rescued cilia length and coverage in miR449−/− cells, consistent with its tubulin-deacetylating function. Altogether, our study establishes a link between miR449, ciliary dysfunction, and COPD pathogenesis."],["dc.description.sponsorship","Deutsche Forschungsgemeinschaft"],["dc.description.sponsorship","UMG Goettingen"],["dc.description.sponsorship","EMBO"],["dc.description.sponsorship","Interdisziplinaeres Zentrum für Klinische Forschung (IZKF) Muenster"],["dc.description.sponsorship","University of Muenster Medical School"],["dc.description.sponsorship","Belgian Interuniversity Attraction Poles"],["dc.description.sponsorship","Research foundation Flanders (FWO)"],["dc.identifier.doi","10.3390/ijms23147749"],["dc.identifier.pii","ijms23147749"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/113901"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-597"],["dc.relation.eissn","1422-0067"],["dc.rights","CC BY 4.0"],["dc.title","miR449 Protects Airway Regeneration by Controlling AURKA/HDAC6-Mediated Ciliary Disassembly"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2017Journal Article
    [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Ambadipudi, Susmitha"],["dc.contributor.author","Biernat, Jacek"],["dc.contributor.author","Riedel, Dietmar"],["dc.contributor.author","Mandelkow, Eckhard"],["dc.contributor.author","Zweckstetter, Markus"],["dc.date.accessioned","2019-07-09T11:43:48Z"],["dc.date.available","2019-07-09T11:43:48Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1038/s41467-017-00480-0"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14684"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/58973"],["dc.notes.intern","Merged from goescholar"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Liquid–liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI