Options
Zhang, Weiqi
Loading...
Preferred name
Zhang, Weiqi
Official Name
Zhang, Weiqi
Alternative Name
Zhang, W.
Now showing 1 - 7 of 7
2007Journal Article [["dc.bibliographiccitation.firstpage","315"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","The Journal of Physiology"],["dc.bibliographiccitation.lastpage","327"],["dc.bibliographiccitation.volume","583"],["dc.contributor.author","Kron, Miriam"],["dc.contributor.author","Moerschel, Michael"],["dc.contributor.author","Reuter, Julia"],["dc.contributor.author","Zhang, W."],["dc.contributor.author","Dutschmann, Mathias"],["dc.date.accessioned","2018-11-07T10:59:36Z"],["dc.date.available","2018-11-07T10:59:36Z"],["dc.date.issued","2007"],["dc.description.abstract","The Kolliker-Fuse nucleus (KF), part of the respiratory network, is involved in the modulation of respiratory phase durations in response to peripheral and central afferent inputs. The KF is immature at birth. Developmental changes in its physiological and anatomical properties have yet to be investigated. Since brain-derived neurotrophic factor (BDNF) is of major importance for the maturation of neuronal networks, we investigated its effects on developmental changes in the KF on different postnatal days (neonatal, P1-5; intermediate, P6-13;juvenile, P14-21) by analysing single neurones in the in vitro slice preparation and network activities in the perfased brainstem preparation in situ. The BDNF had only weak effects on the frequency of mixed excitatory and inhibitory spontaneous postsynaptic currents (sPSCs) in neonatal slice preparations. Postnatally, in the intermediate and juvenile age groups, a significant augmentation of the sPSC frequency was observed in the presence of 100 pm BDNF (+23.5 +/- 12.6 and +76.7 +/- 28.4%, respectively). Subsequent analyses of BDNF effects on evoked excitatory postsynaptic currents (eEPSCs) revealed significant enhancement of eEPSC amplitude of +20.8 +/- 7.0% only in juvenile stages (intermediates, -13.2 +/- 4.8%). On the network level, significant modulation of phrenic nerve activity following BDNF microinjection into the KF was also observed only in juveniles. The data suggest that KF neurones are subject to BDNF-mediated fast synaptic modulation after completion of postnatal maturation. After maturation, BDNF contributes to modulation of fast excitatory neurotransmission in respiratory-related KF neurones. This may be important for network plasticity associated with the processing of afferent information."],["dc.identifier.doi","10.1113/jphysiol.2007.134726"],["dc.identifier.isi","000249178600024"],["dc.identifier.pmid","17569735"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/50744"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Blackwell Publishing"],["dc.relation.issn","0022-3751"],["dc.title","Developmental changes in brain-derived neurotrophic factor-mediated modulations of synaptic activities in the pontine Kolliker-Fuse nucleus of the rat"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2008Review [["dc.bibliographiccitation.firstpage","72"],["dc.bibliographiccitation.issue","1-2"],["dc.bibliographiccitation.journal","Respiratory Physiology & Neurobiology"],["dc.bibliographiccitation.lastpage","79"],["dc.bibliographiccitation.volume","164"],["dc.contributor.author","Dutschmann, Mathias"],["dc.contributor.author","Moerschel, Michael"],["dc.contributor.author","Reuter, Julia"],["dc.contributor.author","Zhang, W."],["dc.contributor.author","Gestreau, Christian"],["dc.contributor.author","Stettner, Georg M."],["dc.contributor.author","Kron, Miriam"],["dc.date.accessioned","2018-11-07T11:08:02Z"],["dc.date.available","2018-11-07T11:08:02Z"],["dc.date.issued","2008"],["dc.description.abstract","The shape of the three-phase respiratory motor pattern (inspiration, postinspiration, late expiration) is controlled by a central pattern generator (CPG) located in the ponto-medullary brainstem. Synaptic interactions between and within specific sub-compartments of the CPG are subject of intensive research. This review addresses the neural control of postinspiratory activity as the essential determinant of inspiratory/expiratory phase duration. The generation of the postinspiratory phase depends on synaptic interaction between neurones of the nucleus tractus solitarii (NTS), which relay afferent inputs from pulmonary stretch receptors, and the pontine Kolliker-Fuse nucleus (KF) as integral parts of the CPG. Both regions undergo significant changes during the first three postnatal weeks in rodents. Developmental changes in glutamatergic synaptic functions and its modulation by brain-derived neurotrophic factor may have implications in synaptic plasticity within the NTS/KF axis. We propose that dependent on these developmental changes, the CPG becomes permissive for short- and long-term plasticity associated with environmental, metabolic and behavioural adaptation of the breathing pattern. (C) 2008 Elsevier B.V. All rights reserved."],["dc.identifier.doi","10.1016/j.resp.2008.06.013"],["dc.identifier.isi","000261248700010"],["dc.identifier.pmid","18620081"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/52701"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Elsevier Science Bv"],["dc.relation.issn","1569-9048"],["dc.title","Postnatal emergence of synaptic plasticity associated with dynamic adaptation of the respiratory motor pattern"],["dc.type","review"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2008Journal Article [["dc.bibliographiccitation.firstpage","2331"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","The Journal of Physiology"],["dc.bibliographiccitation.lastpage","2343"],["dc.bibliographiccitation.volume","586"],["dc.contributor.author","Kron, Miriam"],["dc.contributor.author","Reuter, Julia"],["dc.contributor.author","Gerhardt, Ellen"],["dc.contributor.author","Manzke, Till"],["dc.contributor.author","Zhang, W."],["dc.contributor.author","Dutschmann, Mathias"],["dc.date.accessioned","2018-11-07T11:15:39Z"],["dc.date.available","2018-11-07T11:15:39Z"],["dc.date.issued","2008"],["dc.description.abstract","The Kolliker-Fuse nucleus (KF) contributes essentially to respiratory pattern formation and adaptation of breathing to afferent information. Systems physiology suggests that these KF functions depend on NMDA receptors (NMDA-R). Recent investigations revealed postnatal changes in the modulation of glutamatergic neurotransmission by brain-derived neurotrophic factor (BDNF) in the KF. Therefore, we investigated postnatal changes in NMDA-R subunit composition and postsynaptic modulation of NMDA-R-mediated currents by BDNF in KF slice preparations derived from three age groups (neonatal: postnatal day (P) 1-5; intermediate: P6-13; juvenile: P14-21). Immunohistochemistry showed a developmental up-regulation of the NR2D subunit. This correlated with a developmental increase in decay time of NMDA currents and a decline of desensitization in response to repetitive exogenous NMDA applications. Thus, developmental up-regulation of the NR2D subunit, which reduces the Mg2+ block of NMDA-R, causes these specific changes in NMDA current characteristics. This may determine the NMDA-R-dependent function of the mature KF in the control of respiratory phase transition. Subsequent experiments revealed that bath-application of BDNF progressively potentiated these repetitively evoked NMDA currents only in intermediate and juvenile age groups. Pharmacological inhibition of protein kinase C (PKC), as a downstream component of the BDNF-tyrosine kinase B receptor (trkB) signalling, prevented BDNF-induced potentiation of NMDA currents. BDNF-induced potentiation of NMDA currents in later developmental stages might be essential for synaptic plasticity during the adaptation of the breathing pattern in response to peripheral/central commands. The lack of plasticity in neonatal neurones strengthens the hypothesis that the respiratory network becomes permissive for activity-dependent plasticity with ongoing postnatal development."],["dc.identifier.doi","10.1113/jphysiol.2007.148916"],["dc.identifier.isi","000255497900011"],["dc.identifier.pmid","18339694"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/54416"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Blackwell Publishing"],["dc.relation.issn","0022-3751"],["dc.title","Emergence of brain-derived neurotrophic factor-induced postsynaptic potentiation of NMDA currents during the postnatal maturation of the Kolliker-Fuse nucleus of rat"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2006Conference Abstract [["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","The FASEB Journal"],["dc.bibliographiccitation.volume","20"],["dc.contributor.author","Kron, Martina"],["dc.contributor.author","Zhang, W."],["dc.contributor.author","Bidon, O."],["dc.contributor.author","Dutschmann, Mathias"],["dc.date.accessioned","2018-11-07T10:07:21Z"],["dc.date.available","2018-11-07T10:07:21Z"],["dc.date.issued","2006"],["dc.format.extent","A1214"],["dc.identifier.isi","000236326203300"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/39257"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Federation Amer Soc Exp Biol"],["dc.publisher.place","Bethesda"],["dc.relation.conference","Experimental Biology 2006 Meeting"],["dc.relation.eventlocation","San Francisco, CA"],["dc.relation.issn","0892-6638"],["dc.title","Developmental changes in the BDNF mediated modulation of spontaneous and evoked postsynaptic currents (sPSCs, ePSCs) in the pontine Kolliker-Fuse nucleus (KF) of rat"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details WOS2007Journal Article [["dc.bibliographiccitation.firstpage","3449"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","European Journal of Neuroscience"],["dc.bibliographiccitation.lastpage","3457"],["dc.bibliographiccitation.volume","26"],["dc.contributor.author","Kron, Miriam"],["dc.contributor.author","Zhang, W."],["dc.contributor.author","Dutschmann, Mathias"],["dc.date.accessioned","2018-11-07T10:47:25Z"],["dc.date.available","2018-11-07T10:47:25Z"],["dc.date.issued","2007"],["dc.description.abstract","The Kolliker-Fuse nucleus (KF), part of the pontine respiratory group, is involved in the control of respiratory phase duration, and receives both excitatory and inhibitory afferent input from various other brain regions. There is evidence for developmental changes in the modulation of excitatory inputs to the KF by the neurotrophin brain-derived neurotrophic factor (BDNF). In the present study we investigated if BDNF exerts developmental effects on inhibitory synaptic transmission in the KF. Recordings of inhibitory postsynaptic currents (IPSCs) in KF neurons in a pontine slice preparation revealed general developmental changes. Recording of spontaneous and evoked IPSCs (sIPSCs, eIPSCS) revealed that neonatally the gamma-aminobutyric acid (GABA)ergic fraction of IPSCs was predominant, while in later developmental stages glycinergic neurotransmission significantly increased. Bath-application of BDNF significantly reduced sIPSC frequency in all developmental stages, while BDNF-mediated modulation on eIPSCs showed developmental differences. The eIPSCs mean amplitude was uniformly and significantly reduced following BDNF application only in neurons from rats younger than postnatal day 10. At later postnatal stages the response pattern became heterogeneous, and both augmentations and reductions of eIPSC amplitudes occurred. All BDNF effects on eIPSCs and sIPSCs were reversed with the tyrosine kinase receptor-B inhibitor K252a. We conclude that developmental changes in inhibitory neurotransmission, including the BDNF-mediated modulation of eIPSCs, relate to the postnatal maturation of the KF. The changes in BDNF-mediated modulation of IPSCs in the KF may have strong implications for developmental changes in synaptic plasticity and the adaptation of the breathing pattern to afferent inputs."],["dc.identifier.doi","10.1111/j.1460-9568.2007.05960.x"],["dc.identifier.isi","000251552200012"],["dc.identifier.pmid","18052976"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/47957"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Blackwell Publishing"],["dc.relation.issn","0953-816X"],["dc.title","Developmental changes in the BDNF-induced modulation of inhibitory synaptic transmission in the Kolliker-Fuse nucleus of rat"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2005Conference Abstract [["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","The FASEB Journal"],["dc.bibliographiccitation.volume","19"],["dc.contributor.author","Kron, Martina"],["dc.contributor.author","Morschel, M."],["dc.contributor.author","Zhang, W."],["dc.contributor.author","Dutschmann, Mathias"],["dc.date.accessioned","2018-11-07T11:17:04Z"],["dc.date.available","2018-11-07T11:17:04Z"],["dc.date.issued","2005"],["dc.format.extent","A651"],["dc.identifier.isi","000227610704473"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/54726"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Federation Amer Soc Exp Biol"],["dc.publisher.place","Bethesda"],["dc.relation.conference","Experimental Biology 2005 Meeting/35th International Congress of Physiological Sciences"],["dc.relation.eventlocation","San Diego, CA"],["dc.relation.issn","0892-6638"],["dc.title","Developmental changes of brain derived neurotrophic factor (BDNF) evoked modulation of synaptic activity in the pontine Kolliker-Fuse nucleus (KF) of rat"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details WOS2006Conference Abstract [["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","International Journal of Developmental Neuroscience"],["dc.bibliographiccitation.volume","24"],["dc.contributor.author","Sieber, M."],["dc.contributor.author","Storm, R."],["dc.contributor.author","Martinez-de-la-Torre, M."],["dc.contributor.author","Mueller, T."],["dc.contributor.author","Vasyutina, E."],["dc.contributor.author","Dutschmann, Mathias"],["dc.contributor.author","Aramuni, Gayane"],["dc.contributor.author","Zhang, W."],["dc.contributor.author","Birchmeier, Carmen"],["dc.date.accessioned","2018-11-07T08:54:08Z"],["dc.date.available","2018-11-07T08:54:08Z"],["dc.date.issued","2006"],["dc.format.extent","590"],["dc.identifier.doi","10.1016/j.ijdevneu.2006.09.279"],["dc.identifier.isi","000243663700276"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/22602"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Pergamon-elsevier Science Ltd"],["dc.publisher.place","Oxford"],["dc.relation.conference","16th Biennial Meeting of the International-Society-for-Developmental-Neuroscience"],["dc.relation.eventlocation","Banff, CANADA"],["dc.relation.issn","0736-5748"],["dc.title","The homeodomain factor Lbx1 controls the differentiation of sensory relay neurons in the hindbrain"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI WOS