Options
Nessler, Stefan
Loading...
Preferred name
Nessler, Stefan
Official Name
Nessler, Stefan
Alternative Name
Nessler, S.
Main Affiliation
Now showing 1 - 10 of 12
2010Journal Article [["dc.bibliographiccitation.firstpage","1590"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Journal of Neurology"],["dc.bibliographiccitation.lastpage","1593"],["dc.bibliographiccitation.volume","257"],["dc.contributor.author","Nessler, Stefan"],["dc.contributor.author","Brueck, Wolfgang"],["dc.date.accessioned","2018-11-07T08:39:53Z"],["dc.date.available","2018-11-07T08:39:53Z"],["dc.date.issued","2010"],["dc.description.abstract","The following review summarizes the progress in multiple sclerosis research published in the Journal of Neurology in 2009."],["dc.identifier.doi","10.1007/s00415-010-5689-y"],["dc.identifier.isi","000281250100031"],["dc.identifier.pmid","20689961"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/5157"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/19106"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.publisher.place","Heidelberg"],["dc.relation.issn","0340-5354"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Advances in multiple sclerosis research in 2009"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2021-02-02Journal Article Research Paper [["dc.bibliographiccitation.artnumber","39"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Journal of Neuroinflammation"],["dc.bibliographiccitation.volume","18"],["dc.contributor.author","Ribes, S."],["dc.contributor.author","Zacke, L."],["dc.contributor.author","Nessler, S."],["dc.contributor.author","Saiepour, N."],["dc.contributor.author","Avendaño-Guzmán, E."],["dc.contributor.author","Ballüer, M."],["dc.contributor.author","Hanisch, U. K."],["dc.contributor.author","Nau, R."],["dc.date.accessioned","2021-04-14T08:28:08Z"],["dc.date.accessioned","2022-08-16T13:10:55Z"],["dc.date.available","2021-04-14T08:28:08Z"],["dc.date.available","2022-08-16T13:10:55Z"],["dc.date.issued","2021-02-02"],["dc.date.updated","2022-07-29T12:17:30Z"],["dc.description.abstract","Background\r\n Bacterial meningitis is a fatal disease with a mortality up to 30% and neurological sequelae in one fourth of survivors. Available vaccines do not fully protect against this lethal disease. Here, we report the protective effect of synthetic oligodeoxynucleotides containing unmethylated cytosine-guanine motifs (CpG ODN) against the most frequent form of bacterial meningitis caused by Streptococcus pneumoniae.\r\n \r\n \r\n Methods\r\n Three days prior to the induction of meningitis by intracerebral injection of S. pneumoniae D39, wild-type and Toll-like receptor (TLR9)−/− mice received an intraperitoneal injection of 100 μg CpG ODN or vehicle. To render mice neutropenic, anti-Ly-6G monoclonal antibody was daily administrated starting 4 days before infection with a total of 7 injections. Kaplan-Meier survival analyses and bacteriological studies, in which mice were sacrificed 24 h and 36 h after infection, were performed.\r\n \r\n \r\n Results\r\n Pre-treatment with 100 μg CpG ODN prolonged survival of immunocompetent and neutropenic wild-type mice but not of TLR9−/− mice. There was a trend towards lower mortality in CpG ODN-treated immunocompetent and neutropenic wild-type mice. CpG ODN caused an increase of IL-12/IL-23p40 levels in the spleen and serum in uninfected animals. The effects of CpG ODN on bacterial concentrations and development of clinical symptoms were associated with an increased number of microglia in the CNS during the early phase of infection. Elevated concentrations of IL-12/IL-23p40 and MIP-1α correlated with lower bacterial concentrations in the blood and spleen during infection.\r\n \r\n \r\n Conclusions\r\n Pre-conditioning with CpG ODN strengthened the resistance of neutropenic and immunocompetent mice against S. pneumoniae meningitis in the presence of TLR9. Administration of CpG ODN decreased bacterial burden in the cerebellum and reduced the degree of bacteremia. Systemic administration of CpG ODN may help to prevent or slow the progression to sepsis of bacterial CNS infections in healthy and immunocompromised individuals even after direct inoculation of bacteria into the intracranial compartments, which can occur after sinusitis, mastoiditis, open head trauma, and surgery, including placement of an external ventricular drain."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2021"],["dc.identifier.citation","Journal of Neuroinflammation. 2021 Feb 02;18(1):39"],["dc.identifier.doi","10.1186/s12974-021-02077-3"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/17725"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/82510"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112768"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.notes.intern","Merged from goescholar"],["dc.relation.eissn","1742-2094"],["dc.relation.orgunit","Institut für Neuropathologie"],["dc.rights","CC BY 4.0"],["dc.rights.holder","The Author(s)"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject","Oligodeoxynucleotides containing unmethylated cytosine-guanine motifs (CpG ODN)"],["dc.subject","Streptococcus pneumoniae"],["dc.subject","Meningitis"],["dc.subject","Toll-like receptor (TLR) 9"],["dc.subject","Interleukin (IL)-12/IL-23p40"],["dc.subject","Microglia"],["dc.subject","Macrophage inflammatory protein (MIP)-1α"],["dc.title","Oligodeoxynucleotides containing unmethylated cytosine-guanine motifs are effective immunostimulants against pneumococcal meningitis in the immunocompetent and neutropenic host"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2015Journal Article [["dc.bibliographiccitation.artnumber","208"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Journal of Neuroinflammation"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Djukic, Marija"],["dc.contributor.author","Sostmann, Nadine"],["dc.contributor.author","Bertsch, Thomas"],["dc.contributor.author","Mecke, Marianne"],["dc.contributor.author","Nessler, Stefan"],["dc.contributor.author","Manig, Anja"],["dc.contributor.author","Hanisch, Uwe-Karsten"],["dc.contributor.author","Triebel, Jakob"],["dc.contributor.author","Bollheimer, L. C."],["dc.contributor.author","Sieber, Cornel"],["dc.contributor.author","Nau, Roland"],["dc.date.accessioned","2019-07-09T11:40:54Z"],["dc.date.available","2019-07-09T11:40:54Z"],["dc.date.issued","2015"],["dc.description.abstract","Background Meningoencephalitis caused by Escherichia coli is associated with high rates of mortality and risk of neurological sequelae in newborns and infants and in older or immunocompromised adults. A high prevalence of neurological disorders has been observed in geriatric populations at risk of hypovitaminosis D. Methods In vivo, we studied the effects of vitamin D3 on survival and the host’s immune response in experimental bacterial meningoencephalitis in mice after intracerebral E. coli infection. To produce different systemic vitamin D3 concentrations, mice received a low, standard, or high dietary vitamin D3 supplementation. Bacterial titers in blood, spleen, and brain homogenates were determined. Leukocyte infiltration was assessed by histological scores, and tissue cytokine or chemokine concentrations were measured. Results Mice fed a diet with low vitamin D3 concentration died earlier than control animals after intracerebral infection. Vitamin D deficiency did not inhibit leukocyte recruitment into the subarachnoid space and did not lead to an increased density of bacteria in blood, spleen, or brain homogenates. The release of proinflammatory interleukin (IL)-6 was decreased and the release of anti-inflammatory IL-10 was increased in mice fed a diet with high vitamin D3 supplementation. Conclusion Our observations suggest a detrimental role of vitamin D deficiency in bacterial central nervous system infections. Vitamin D may exert immune regulatory functions."],["dc.identifier.doi","10.1186/s12974-014-0208-1"],["dc.identifier.pmid","25563481"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/11473"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/58294"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.rights","Goescholar"],["dc.rights.access","openAccess"],["dc.rights.holder","Marija Djukic et al.; licensee BioMed Central Ltd."],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Vitamin D deficiency decreases survival of bacterial meningoencephalitis in mice"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2021Journal Article Research Paper [["dc.bibliographiccitation.firstpage","1174"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Journal of Inherited Metabolic Disease"],["dc.bibliographiccitation.lastpage","1185"],["dc.bibliographiccitation.volume","44"],["dc.contributor.affiliation","Klemp, Henry; 1\r\nDepartment of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen\r\nGeorg August University\r\nGöttingen Germany"],["dc.contributor.affiliation","Nessler, Stefan; 2\r\nInstitute of Neuropathology, University Medical Center Göttingen\r\nGeorg August University\r\nGöttingen Germany"],["dc.contributor.affiliation","Streit, Frank; 3\r\nInstitute for Clinical Chemistry, University Medical Center Göttingen\r\nGeorg August University\r\nGöttingen Germany"],["dc.contributor.affiliation","Krätzner, Ralph; 1\r\nDepartment of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen\r\nGeorg August University\r\nGöttingen Germany"],["dc.contributor.affiliation","Rosewich, Hendrik; 1\r\nDepartment of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen\r\nGeorg August University\r\nGöttingen Germany"],["dc.contributor.affiliation","Gärtner, Jutta; 1\r\nDepartment of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen\r\nGeorg August University\r\nGöttingen Germany"],["dc.contributor.author","Kettwig, Matthias"],["dc.contributor.author","Klemp, Henry"],["dc.contributor.author","Nessler, Stefan"],["dc.contributor.author","Streit, Frank"],["dc.contributor.author","Krätzner, Ralph"],["dc.contributor.author","Rosewich, Hendrik"],["dc.contributor.author","Gärtner, Jutta"],["dc.date.accessioned","2021-06-01T09:42:02Z"],["dc.date.available","2021-06-01T09:42:02Z"],["dc.date.issued","2021"],["dc.date.updated","2022-03-21T01:43:41Z"],["dc.description.abstract","Abstract X‐linked adrenoleukodystrophy (X‐ALD) is the most common leukodystrophy. Despite intensive research in recent years, it remains unclear, what drives the different clinical disease courses. Due to this missing pathophysiological link, therapy for the childhood cerebral disease course of X‐ALD (CCALD) remains symptomatic; the allogenic hematopoietic stem cell transplantation or hematopoietic stem‐cell gene therapy is an option for early disease stages. The inclusion of dried blood spot (DBS) C26:0‐lysophosphatidylcholine to newborn screening in an increasing number of countries is leading to an increasing number of X‐ALD patients diagnosed at risk for CCALD. Current follow‐up in asymptomatic boys with X‐ALD requires repetitive cerebral MRIs under sedation. A reliable and easily accessible biomarker that predicts CCALD would therefore be of great value. Here we report the application of targeted metabolomics by AbsoluteIDQ p180‐Kit from Biocrates to search for suitable biomarkers in X‐ALD. LysoPC a C20:3 and lysoPC a C20:4 were identified as metabolites that indicate neuroinflammation after induction of experimental autoimmune encephalitis in the serum of Abcd1tm1Kds mice. Analysis of serum from X‐ALD patients also revealed different concentrations of these lipids at different disease stages. Further studies in a larger cohort of X‐ALD patient sera are needed to prove the diagnostic value of these lipids for use as early biomarkers for neuroinflammation in CCALD patients."],["dc.description.sponsorship","Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659"],["dc.description.sponsorship","Niedersächsisches Ministerium für Wissenschaft und Kultur http://dx.doi.org/10.13039/501100010570"],["dc.description.sponsorship","Germany's Excellence Strategy"],["dc.description.sponsorship","Transregional Collaborative Research Center"],["dc.identifier.doi","10.1002/jimd.12389"],["dc.identifier.pmid","33855724"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/85119"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/270"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.eissn","1573-2665"],["dc.relation.issn","0141-8955"],["dc.relation.workinggroup","RG Gärtner"],["dc.rights","This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes."],["dc.title","Targeted metabolomics revealed changes in phospholipids during the development of neuroinflammation in Abcd1 tm1Kds mice and X‐linked adrenoleukodystrophy patients"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2014Journal Article [["dc.bibliographiccitation.artnumber","14"],["dc.bibliographiccitation.journal","Journal of Neuroinflammation"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Ribes, Sandra"],["dc.contributor.author","Meister, Tanja"],["dc.contributor.author","Ott, Martina"],["dc.contributor.author","Redlich, Sandra"],["dc.contributor.author","Janova, Hana"],["dc.contributor.author","Hanisch, Uwe-Karsten"],["dc.contributor.author","Nessler, Stefan"],["dc.contributor.author","Nau, Roland"],["dc.date.accessioned","2018-11-07T09:45:02Z"],["dc.date.available","2018-11-07T09:45:02Z"],["dc.date.issued","2014"],["dc.description.abstract","Background: Prophylaxis with unmethylated cytosine phosphate guanidine (CpG) oligodeoxynucleotides (ODN) protects against several systemic experimental infections. Escherichia coli is a major cause of Gram-negative neonatal bacterial meningitis and also causes meningitis and meningoencephalitis in older and immunocompromised patients. Methods: Wild-type (wt) and Toll-like receptor 9 (TLR9)-deficient mice were rendered neutropenic by intraperitoneal administration of the anti-Ly-6G monoclonal antibody. Immunocompetent and neutropenic mice received intraperitoneal CpG ODN or vehicle 72 h prior to induction of E. coli K1 meningoencephalitis. Results: Pre-treatment with CpG ODN significantly increased survival of neutropenic wt mice from 33% to 75% (P = 0.0003) but did not protect neutropenic TLR9(-/-) mice. The protective effect of CpG ODN was associated with an enhanced production of interleukin (IL)-12/IL-23p40 with sustained increased levels in serum and spleen at least for 17 days after conditioning compared to buffer-treated animals. CpG-treated neutropenic wt mice showed reduced bacterial concentrations and increased recruitment of Ly6C(high)CCR2(+) monocytes in brain and spleen 42 h after infection. The levels of macrophage inflammatory protein 1 alpha (MIP-1 alpha) and interferon gamma (IFN-gamma) in spleen were higher 42 h after infection in CpG-treated compared to buffer-treated neutropenic animals. In immunocompetent mice, prophylaxis with CpG ODN did not significantly increase survival compared to the buffer group (60% vs. 45%, P = 0.2). Conclusions: These findings suggest that systemic administration of CpG ODN may help to prevent bacterial CNS infections in immunocompromised individuals."],["dc.identifier.doi","10.1186/1742-2094-11-14"],["dc.identifier.isi","000333212600001"],["dc.identifier.pmid","24456653"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/9757"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/34526"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Biomed Central Ltd"],["dc.relation.issn","1742-2094"],["dc.rights","CC BY 2.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/2.0"],["dc.title","Intraperitoneal prophylaxis with CpG oligodeoxynucleotides protects neutropenic mice against intracerebral Escherichia coli K1 infection"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2020Journal Article [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Journal of Neuroinflammation"],["dc.bibliographiccitation.volume","17"],["dc.contributor.author","Ribes, Sandra"],["dc.contributor.author","Arcilla, Christa"],["dc.contributor.author","Ott, Martina"],["dc.contributor.author","Schütze, Sandra"],["dc.contributor.author","Hanisch, Uwe-Karsten"],["dc.contributor.author","Nessler, Stefan"],["dc.contributor.author","Nau, Roland"],["dc.date.accessioned","2020-12-10T18:39:00Z"],["dc.date.available","2020-12-10T18:39:00Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1186/s12974-020-1700-4"],["dc.identifier.eissn","1742-2094"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/17124"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/77507"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.intern","Merged from goescholar"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Pre-treatment with the viral Toll-like receptor 3 agonist poly(I:C) modulates innate immunity and protects neutropenic mice infected intracerebrally with Escherichia coli"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2019Journal Article [["dc.bibliographiccitation.firstpage","18"],["dc.bibliographiccitation.journal","EBioMedicine"],["dc.bibliographiccitation.lastpage","19"],["dc.bibliographiccitation.volume","48"],["dc.contributor.author","Nessler, Stefan"],["dc.date.accessioned","2020-12-10T14:23:31Z"],["dc.date.available","2020-12-10T14:23:31Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1016/j.ebiom.2019.09.029"],["dc.identifier.issn","2352-3964"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16853"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/71950"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.intern","Merged from goescholar"],["dc.rights","CC BY-NC-ND 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-nd/4.0"],["dc.title","Antigen-specific immunotherapy for MOG antibody-associated diseases"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2021-10-30Journal Article Research Paper [["dc.bibliographiccitation.artnumber","155"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine"],["dc.bibliographiccitation.volume","29"],["dc.contributor.author","Lier, Martin"],["dc.contributor.author","Nessler, Stefan"],["dc.contributor.author","Stadelmann, Christine"],["dc.contributor.author","Pressler, Meike"],["dc.contributor.author","Saager, Leif"],["dc.contributor.author","Moerer, Onnen"],["dc.contributor.author","Roessler, Markus"],["dc.contributor.author","Meissner, Konrad"],["dc.contributor.author","Winkler, Martin S."],["dc.date.accessioned","2021-11-25T11:12:41Z"],["dc.date.accessioned","2022-08-18T12:33:00Z"],["dc.date.available","2021-11-25T11:12:41Z"],["dc.date.available","2022-08-18T12:33:00Z"],["dc.date.issued","2021-10-30"],["dc.date.updated","2022-07-29T12:17:57Z"],["dc.description.abstract","Abstract\r\n \r\n Background\r\n Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a highly contagious airborne virus inducing pandemic coronavirus disease 2019 (COVID-19). This is most relevant for medical staff working under harmful conditions in emergencies often dealing with patients and an undefined SARS-CoV-2 status. We aimed to measure the effect of high-class filtering facepieces (FFP) in emergency medical service (EMS) staff by analyzing seroprevalence and history of positive polymerase chain reaction (PCR) for SARS-CoV-2.\r\n \r\n \r\n Method\r\n This observational cohort study included workers in EMS, who were compared with hospital staff (HS) and staff, which was not directly involved in patient care (NPC). All direct patient contacts of EMS workers were protected by FFP2/N95 (filtering face piece protection class 2/non-oil-based particulates filter efficiency 95%) masks, whereas HS was protected by FFP2/N95 exclusively when a patient had a proven or suspected SARS-CoV-2 infection. NPC was not protected by higher FFP. The seroprevalence of SARS-CoV-2 antibodies was analyzed by immunoassay by end of 12/2020 together with the history of a positive PCR. In addition, a self-assessment was performed regarding the quantity of SARS-CoV-2 positive contacts, about flu symptoms and personal belief of previous COVID-19 infections.\r\n \r\n \r\n Results\r\n The period in which contact to SARS-CoV-2 positive patients has been possible was 10 months (March to December 2020)—with 54,681 patient contacts documented for EMS—either emergencies (n = 33,241) or transportation services (n = 21,440). Seven hundred-thirty (n = 730) participants were included into the study (n = EMS: 325, HS: 322 and NPC: 83). The analysis of the survey showed that the exposure to patients with an unknown and consecutive positive SARS-CoV-2 result was significantly higher for EMS when compared to HS (EMS 55% vs. HS 30%, p = 0.01). The incidence of a SARS-CoV-2 infection in our cohort was 1.2% (EMS), 2.2% (HS) and 2.4% (NPC) within the three groups (ns) and lowest in EMS. Furthermore, the belief of previous COVID-19 was significant higher in EMS (19% vs. 10%),\r\n \r\n \r\n Conclusion\r\n The consistent use of FFP2/N95 in EMS is able to prevent work-related SARS-CoV-2 infections in emergency situations. The significance of physical airway protection in exposed medical staff is still relevant especially under the aspect of new viral variants and unclear effectiveness of new vaccines.\r\n \r\n \r\n Graphical Abstract"],["dc.description.sponsorship","Open-Access-Publikationsfonds 2022"],["dc.identifier.citation","Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine. 2021 Oct 30;29(1):155"],["dc.identifier.doi","10.1186/s13049-021-00969-0"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/93536"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112914"],["dc.language.iso","en"],["dc.publisher","BioMed Central"],["dc.rights","CC BY 4.0"],["dc.rights.holder","The Author(s)"],["dc.subject","Personal protection equipment"],["dc.subject","Filtering facepiece"],["dc.subject","FFP2"],["dc.subject","N95"],["dc.subject","SARS-CoV-2"],["dc.subject","Seroprevalence"],["dc.subject","Emergency medical services"],["dc.title","High class filtering facepiece (FFP) are fundamental and effective in protection of emergency health care workers: an observational cohort study in a German community"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2011Journal Article [["dc.bibliographiccitation.artnumber","73"],["dc.bibliographiccitation.journal","Journal of Neuroinflammation"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Cravens, Petra D."],["dc.contributor.author","Hussain, Rehana Z."],["dc.contributor.author","Zacharias, Tresa E."],["dc.contributor.author","Ben, Li-Hong"],["dc.contributor.author","Herndon, Emily"],["dc.contributor.author","Vinnakota, Ramya"],["dc.contributor.author","Lambracht-Washington, Doris"],["dc.contributor.author","Nessler, Stefan"],["dc.contributor.author","Zamvil, Scott S."],["dc.contributor.author","Eagar, Todd N."],["dc.contributor.author","Stueve, Olaf"],["dc.date.accessioned","2018-11-07T08:54:57Z"],["dc.date.available","2018-11-07T08:54:57Z"],["dc.date.issued","2011"],["dc.description.abstract","Experimental autoimmune encephalomyelitis (EAE) is a relevant animal model for the human demyelinating inflammatory disorder of the central nervous system (CNS), multiple sclerosis (MS). Induction of EAE by adoptive transfer allows studying the role of the donor T lymphocyte in disease pathogenesis. It has been challenging to reliably induce adoptive transfer EAE in C57BL/6 (H-2(b)) mice. The goal of this study was to develop a reproducible and high yield protocol for adoptive transfer EAE in C57BL/6 mice. A step-wise experimental approach permitted us to develop a protocol that resulted in a consistent relatively high disease incidence of similar to 70% in recipient mice. Donor mice were immunized with myelin oligodendrocyte glycoprotein (MOG)(p35-55) in complete Freund's adjuvant (CFA) followed by pertussis toxin (PT). Only lymph node cells (LNC) isolated at day 12 post immunization, and restimulated in vitro for 72 hours with 10 mu g/mL of MOG(p35-55) and 0.5 ng/mL of interleukin-12 (IL-12) were able to transfer disease. The ability of LNC to transfer disease was associated with the presence of inflammatory infiltrates in the CNS at day 12. Interferon gamma (IFN gamma) was produced at comparable levels in cell cultures prepared from mice at both day 6 and day 12 post immunization. By contrast, there was a trend towards a negative association between IL-17 and disease susceptibility in our EAE model. The amount of GM-CSF secreted was significantly increased in the culture supernatants from cells collected at day 12 post immunization versus those collected at day 6 post-immunization. Activated CD4(+) T cells present in the day 12 LNC cultures maintained expression of the transcription factor T-bet, which has been shown to regulate the expression of the IL-23 receptor. Also, there was an increased prevalence of MOGp35-55-specific CD4(+) T cells in day 12 LNC after in vitro re-stimulation. In summary, encephalitogenic LNC that adoptively transfer EAE in C57BL/6 mice were not characterized by a single biomarker in our study, but by a composite of inflammatory markers. Our data further suggest that GM-CSF expression by CD4(+) T cells regulated by IL-23 contributes to their encephalitogenicity in our EAE model."],["dc.description.sponsorship","NIAID NIH HHS [R01 AI073737]; NINDS NIH HHS [R01 NS063008]"],["dc.identifier.doi","10.1186/1742-2094-8-73"],["dc.identifier.isi","000294258200001"],["dc.identifier.pmid","21702922"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/6872"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/22793"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Biomed Central Ltd"],["dc.relation.issn","1742-2094"],["dc.rights","CC BY 2.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/2.0"],["dc.title","Lymph node-derived donor encephalitogenic CD4(+) T cells in C57BL/6 mice adoptive transfer experimental autoimmune encephalomyelitis highly express GM-CSF and T-bet"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2017Journal Article [["dc.bibliographiccitation.firstpage","15"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Acta Neuropathologica"],["dc.bibliographiccitation.lastpage","34"],["dc.bibliographiccitation.volume","134"],["dc.contributor.author","Lagumersindez-Denis, Nielsen"],["dc.contributor.author","Wrzos, Claudia"],["dc.contributor.author","Mack, Matthias"],["dc.contributor.author","Winkler, Anne"],["dc.contributor.author","van der Meer, Franziska"],["dc.contributor.author","Reinert, Marie-Christine"],["dc.contributor.author","Hollasch, Heiko"],["dc.contributor.author","Flach, Anne"],["dc.contributor.author","Bruehl, Hilke"],["dc.contributor.author","Cullen, Eilish"],["dc.contributor.author","Schlumbohm, Christina"],["dc.contributor.author","Fuchs, Eberhard"],["dc.contributor.author","Linington, Christopher"],["dc.contributor.author","Barrantes-Freer, Alonso"],["dc.contributor.author","Metz, Imke"],["dc.contributor.author","Wegner, Christiane"],["dc.contributor.author","Liebetanz, David"],["dc.contributor.author","Prinz, Marco R."],["dc.contributor.author","Brueck, Wolfgang"],["dc.contributor.author","Stadelmann, Christine"],["dc.contributor.author","Nessler, Stefan"],["dc.date.accessioned","2018-11-07T10:22:07Z"],["dc.date.available","2018-11-07T10:22:07Z"],["dc.date.issued","2017"],["dc.description.abstract","Cortical demyelination is a widely recognized hallmark of multiple sclerosis (MS) and correlate of disease progression and cognitive decline. The pathomechanisms initiating and driving gray matter damage are only incompletely understood. Here, we determined the infiltrating leukocyte subpopulations in 26 cortical demyelinated lesions of biopsied MS patients and assessed their contribution to cortical lesion formation in a newly developed mouse model. We find that conformation-specific anti-myelin antibodies contribute to cortical demyelination even in the absence of the classical complement pathway. T cells and natural killer cells are relevant for intracortical type 2 but dispensable for subpial type 3 lesions, whereas CCR2(+) monocytes are required for both. Depleting CCR2(+) monocytes in marmoset monkeys with experimental autoimmune encephalomyelitis using a novel humanized CCR2 targeting antibody translates into significantly less cortical demyelination and disease severity. We conclude that biologics depleting CCR2(+) monocytes might be attractive candidates for preventing cortical lesion formation and ameliorating disease progression in MS."],["dc.identifier.doi","10.1007/s00401-017-1706-x"],["dc.identifier.isi","000403235900002"],["dc.identifier.pmid","28386765"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14713"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/42218"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Springer"],["dc.relation.issn","1432-0533"],["dc.relation.issn","0001-6322"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Differential contribution of immune effector mechanisms to cortical demyelination in multiple sclerosis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS