Now showing 1 - 10 of 182
  • 2008Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","47"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Ultrasound in Medicine & Biology"],["dc.bibliographiccitation.lastpage","55"],["dc.bibliographiccitation.volume","34"],["dc.contributor.author","Wasmeier, Gerald H."],["dc.contributor.author","Zimmermann, Wolfram-Hubertus"],["dc.contributor.author","Schineis, Nico"],["dc.contributor.author","Melnychenko, Ivan"],["dc.contributor.author","Voigt, Jens-Uwe"],["dc.contributor.author","Eschenhagen, Thomas"],["dc.contributor.author","Flachskampf, Frank A."],["dc.contributor.author","Daniel, Werner G."],["dc.contributor.author","Nixdorff, Uwe"],["dc.date.accessioned","2017-09-07T11:48:49Z"],["dc.date.available","2017-09-07T11:48:49Z"],["dc.date.issued","2008"],["dc.description.abstract","Real-time myocardial contrast echocardiography (MCE) is a noninvasive perfusion imaging method, whereas technical and resolution problems impair its application in small animals. Hence, we investigated the feasibility of NICE in experimental cardiovascular set-ups involving healthy and infarcted myocardium in rats. Twenty-five male Wistar rats were examined under volatile anesthesia (2.5% isoflurane) with high-resolution conventional 2-D echocardiography (2DE) and real-time MICE (Sonos 7500 with 15MHz-transducer, Philips Medical Systems, Andover, MA, USA) in short-axis view. Contrast agent (SonoVue, Bracco, Milan, Italy) was infused as a bolus into a sublingual vein. Background-subtracted contrast signal intensity (SI) was measured off-line in six end-systolic segments and fitted to an exponential curve (gamma variate). Derived peak SI was subsequently calculated and compared with wall motion and common functional measured quantities (left ventricular end-diastolic diameter [LVEDD], area shortening [AS]). Recordings were performed before and 14 days after left anterior descending (LAD) ligature. Infarction induced anterior wall motion abnormalities (WMA) in all animals (16 akinetic, 9 hypokinetic), increased LVEDD (9.1 +/- 0.6 vs. 7.9 +/- 0.6 mm, p < 0.001), reduced AS (36.1 +/- 10.0 vs. 59.5 +/- 4.1%, p < 0.001) and reduced anterior segmental SI (0.4 +/- 0.4 dB akinetic / 1.7 +/- 1.7 dB hypokinetic vs. 15.8 +/- 10.9 dB preinfarct, p < 0.001 / p < 0.001). Segmental SI in normokinetic segments remained unchanged. Area at risk (perfusion defect) correlated well with WMA (r = 0.838). These data confirmed high-resolution real-time NICE as a rational tool for assessing myocardial perfusion of Wistar rats. It may therefore be a useful diagnostic tool for ill-vivo cardiovascular research in small animals."],["dc.identifier.doi","10.1016/j.ultrasmedbio.2007.06.027"],["dc.identifier.gro","3143391"],["dc.identifier.isi","000252038900007"],["dc.identifier.pmid","17854980"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/899"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Elsevier Science Inc"],["dc.relation.issn","0301-5629"],["dc.title","Real-time myocardial contrast echocardiography for assessing perfusion and function in healthy and infarcted Wistar rats"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2017Book Chapter
    [["dc.bibliographiccitation.firstpage","219"],["dc.bibliographiccitation.lastpage","239"],["dc.contributor.author","Fujita, Buntaro"],["dc.contributor.author","Tiburcy, Malte"],["dc.contributor.author","Ensminger, Stephan"],["dc.contributor.author","Zimmermann, Wolfram-Hubertus"],["dc.contributor.editor","Ieda, Masaki"],["dc.contributor.editor","Zimmermann, Wolfram-Hubertus"],["dc.date.accessioned","2019-02-27T13:40:08Z"],["dc.date.available","2019-02-27T13:40:08Z"],["dc.date.issued","2017"],["dc.description.abstract","Heart muscle restoration with in vitro engineered tissue constructs is an exciting and rapidly advancing field. Feasibility, safety, and efficacy data have been obtained in animal models. First clinical trials are on the way to explore the therapeutic utility of cell-free and non-contractile cell-containing grafts. Engineering of contractile patches according to current good manufacturing practice (cGMP) for bona fide myocardial re-muscularization and scalability to address clinical demands remains challenging. Proof-of-concept for solutions to address obvious technical hurdles exists, and it can be anticipated that the first generation of clinically applicable engineered heart muscle (EHM) grafts will become available in the near future. Foreseeable, but likely manageable risks include arrhythmia induction and teratoma formation. Remaining biomedical challenges pertain to the requirement of immune suppression and the strategic approach to optimize immune suppression without subjecting the target patient population to an unacceptable risk. This chapter summarizes the current state of tissue-engineered heart repair with a special emphasis on knowledge gained from in vitro and in vivo studies as well as issues pertaining to transplant immunology and cGMP process development."],["dc.identifier.doi","10.1007/978-3-319-56106-6_10"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/57646"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/185"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.publisher","Springer"],["dc.publisher.place","Cham, Switzerland"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | C04: Fibroblasten-Kardiomyozyten Interaktion im gesunden und erkrankten Herzen: Mechanismen und therapeutische Interventionen bei Kardiofibroblastopathien"],["dc.relation.crisseries","Cardiac and Vascular Biology"],["dc.relation.doi","10.1007/978-3-319-56106-6"],["dc.relation.isbn","978-3-319-56104-2"],["dc.relation.isbn","978-3-319-56106-6"],["dc.relation.ispartof","Cardiac Regeneration"],["dc.relation.ispartofseries","Cardiac and Vascular Biology"],["dc.relation.issn","2509-7830"],["dc.relation.issn","2509-7849"],["dc.relation.workinggroup","RG Tiburcy (Stem Cell Disease Modeling)"],["dc.relation.workinggroup","RG Zimmermann (Engineered Human Myocardium)"],["dc.title","State-of-the-Art in Tissue-Engineered Heart Repair"],["dc.type","book_chapter"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2018Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","ehy600"],["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.journal","European Heart Journal"],["dc.bibliographiccitation.lastpage","19"],["dc.contributor.author","Maack, Christoph"],["dc.contributor.author","Eschenhagen, Thomas"],["dc.contributor.author","Hamdani, Nazha"],["dc.contributor.author","Heinzel, Frank R."],["dc.contributor.author","Lyon, Alexander R."],["dc.contributor.author","Manstein, Dietmar J."],["dc.contributor.author","Metzger, Joseph"],["dc.contributor.author","Papp, Zoltán"],["dc.contributor.author","Tocchetti, Carlo G."],["dc.contributor.author","Yilmaz, M. Birhan"],["dc.contributor.author","Anker, Stefan D."],["dc.contributor.author","Balligand, Jean-Luc"],["dc.contributor.author","Bauersachs, Johann"],["dc.contributor.author","Brutsaert, Dirk"],["dc.contributor.author","Carrier, Lucie"],["dc.contributor.author","Chlopicki, Stefan"],["dc.contributor.author","Cleland, John G."],["dc.contributor.author","de Boer, Rudolf A."],["dc.contributor.author","Dietl, Alexander"],["dc.contributor.author","Fischmeister, Rodolphe"],["dc.contributor.author","Harjola, Veli-Pekka"],["dc.contributor.author","Heymans, Stephane"],["dc.contributor.author","Hilfiker-Kleiner, Denise"],["dc.contributor.author","Holzmeister, Johannes"],["dc.contributor.author","de Keulenaer, Gilles"],["dc.contributor.author","Limongelli, Giuseppe"],["dc.contributor.author","Linke, Wolfgang A."],["dc.contributor.author","Lund, Lars H."],["dc.contributor.author","Masip, Josep"],["dc.contributor.author","Metra, Marco"],["dc.contributor.author","Mueller, Christian"],["dc.contributor.author","Pieske, Burkert"],["dc.contributor.author","Ponikowski, Piotr"],["dc.contributor.author","Ristić, Arsen"],["dc.contributor.author","Ruschitzka, Frank"],["dc.contributor.author","Seferović, Petar M."],["dc.contributor.author","Skouri, Hadi"],["dc.contributor.author","Zimmermann, Wolfram H."],["dc.contributor.author","Mebazaa, Alexandre"],["dc.date.accessioned","2019-02-20T13:50:51Z"],["dc.date.available","2019-02-20T13:50:51Z"],["dc.date.issued","2018"],["dc.description.abstract","Acute heart failure (HF) and in particular, cardiogenic shock are associated with high morbidity and mortality. A therapeutic dilemma is that the use of positive inotropic agents, such as catecholamines or phosphodiesterase-inhibitors, is associated with increased mortality. Newer drugs, such as levosimendan or omecamtiv mecarbil, target sarcomeres to improve systolic function putatively without elevating intracellular Ca2+. Although meta-analyses of smaller trials suggested that levosimendan is associated with a better outcome than dobutamine, larger comparative trials failed to confirm this observation. For omecamtiv mecarbil, Phase II clinical trials suggest a favourable haemodynamic profile in patients with acute and chronic HF, and a Phase III morbidity/mortality trial in patients with chronic HF has recently begun. Here, we review the pathophysiological basis of systolic dysfunction in patients with HF and the mechanisms through which different inotropic agents improve cardiac function. Since adenosine triphosphate and reactive oxygen species production in mitochondria are intimately linked to the processes of excitation–contraction coupling, we also discuss the impact of inotropic agents on mitochondrial bioenergetics and redox regulation. Therefore, this position paper should help identify novel targets for treatments that could not only safely improve systolic and diastolic function acutely, but potentially also myocardial structure and function over a longer-term."],["dc.identifier.doi","10.1093/eurheartj/ehy600"],["dc.identifier.pmid","30295807"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/57605"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/235"],["dc.language.iso","en"],["dc.notes.status","fcwi"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | C01: Epigenetische Kontrolle der Herzfibrose"],["dc.relation","SFB 1002 | C04: Fibroblasten-Kardiomyozyten Interaktion im gesunden und erkrankten Herzen: Mechanismen und therapeutische Interventionen bei Kardiofibroblastopathien"],["dc.relation.workinggroup","RG Linke (Kardiovaskuläre Physiologie)"],["dc.relation.workinggroup","RG Zimmermann (Engineered Human Myocardium)"],["dc.title","Treatments targeting inotropy"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2022-04-04Journal Article Research Paper
    [["dc.bibliographiccitation.journal","Journal of Molecular and Cellular Cardiology"],["dc.contributor.author","Jebran, Ahmad-Fawad"],["dc.contributor.author","Tiburcy, Malte"],["dc.contributor.author","Biermann, Daniel"],["dc.contributor.author","Balfanz, Paul"],["dc.contributor.author","Didié, Michael"],["dc.contributor.author","Karikkineth, Bijoy Chandapillai"],["dc.contributor.author","Schöndube, Friedrich"],["dc.contributor.author","Kutschka, Ingo"],["dc.contributor.author","Zimmermann, Wolfram-Hubertus"],["dc.date.accessioned","2022-04-14T07:06:38Z"],["dc.date.available","2022-04-14T07:06:38Z"],["dc.date.issued","2022-04-04"],["dc.description.abstract","Engineered heart muscle (EHM) can be implanted epicardially to remuscularize the failing heart. In case of a severely scarred ventricle, excision of scar followed by transmural heart wall replacement may be a more desirable application. Accordingly, we tested the hypothesis that allograft (rat) and xenograft (human) EHM can also be administered as transmural heart wall replacement in a heterotopic, volume-loaded heart transplantation model. We first established a novel rat model model to test surgical transmural left heart wall repair. Subsequently and in continuation of our previous allograft studies, we tested outcome after implantation of contractile engineered heart muscle (EHM) and non-contractile engineered connective tissue (ECT) as well as engineered mesenchymal tissue (EMT) allografts as transmural heart wall replacement. Finally, proof-of-concept for the application of human EHM was obtained in an athymic nude rat model. Only in case of EHM implantation, remuscularization of the surgically created transmural defect was observed with palpable graft vascularization. Taken together, feasibility of transmural heart repair using bioengineered myocardial grafts could be demonstrated in a novel rat model of heterotopic heart transplantation."],["dc.identifier.doi","10.1016/j.yjmcc.2022.03.013"],["dc.identifier.pmid","35390437"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/106523"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/473"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/427"],["dc.language.iso","en"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | C04: Fibroblasten-Kardiomyozyten Interaktion im gesunden und erkrankten Herzen: Mechanismen und therapeutische Interventionen bei Kardiofibroblastopathien"],["dc.relation.eissn","1095-8584"],["dc.relation.issn","0022-2828"],["dc.relation.workinggroup","RG Zimmermann (Engineered Human Myocardium)"],["dc.title","Transmural myocardial repair with engineered heart muscle in a rat model of heterotopic heart transplantation - A proof-of-concept study"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2019Journal Article
    [["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.journal","Progress in Biophysics and Molecular Biology"],["dc.bibliographiccitation.lastpage","2"],["dc.bibliographiccitation.volume","144"],["dc.contributor.author","Tarantola, Marco"],["dc.contributor.author","Meyer, Tim"],["dc.contributor.author","Schmidt, Christoph F."],["dc.contributor.author","Zimmermann, Wolfram-Hubertus"],["dc.date.accessioned","2020-12-10T15:20:42Z"],["dc.date.available","2020-12-10T15:20:42Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1016/j.pbiomolbio.2019.03.009"],["dc.identifier.issn","0079-6107"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/72770"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Physics meets medicine - At the heart of active matter"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2016Conference Abstract
    [["dc.bibliographiccitation.journal","Acta Physiologica"],["dc.bibliographiccitation.volume","216"],["dc.contributor.author","Jatho, Aline"],["dc.contributor.author","Hartmann, S."],["dc.contributor.author","Kittana, Naim"],["dc.contributor.author","Muegge, F."],["dc.contributor.author","Wuertz, Christina"],["dc.contributor.author","Tiburcy, Malte"],["dc.contributor.author","Zimmermann, Wolfram-Hubertus"],["dc.contributor.author","Katschinski, Doerthe Magdalena"],["dc.contributor.author","Lutz, S."],["dc.date.accessioned","2018-11-07T10:17:27Z"],["dc.date.available","2018-11-07T10:17:27Z"],["dc.date.issued","2016"],["dc.identifier.isi","000372285400124"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/41230"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.publisher.place","Hoboken"],["dc.relation.issn","1748-1716"],["dc.relation.issn","1748-1708"],["dc.title","RhoA ambivalently controls prominent myofibroblast characteristics by involving distinct signaling routes"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details WOS
  • 2017Journal Article Overview
    [["dc.bibliographiccitation.artnumber","78"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Current Cardiology Reports"],["dc.bibliographiccitation.volume","19"],["dc.contributor.author","Fujita, Buntaro"],["dc.contributor.author","Zimmermann, Wolfram-Hubertus"],["dc.date.accessioned","2018-04-23T11:49:18Z"],["dc.date.available","2018-04-23T11:49:18Z"],["dc.date.issued","2017"],["dc.description.abstract","Purpose of Review This review provides an overview of the current state of tissue-engineered heart repair with a special focus on the anticipated modes of action of tissue-engineered therapy candidates and particular implications as to transplant immunology. Recent Findings Myocardial tissue engineering technologies have made tremendous advances in recent years. Numerous different strategies are under investigation and have reached different stages on their way to clinical translation. Studies in animal models demonstrated that heart repair requires either remuscularization by delivery of bona fide cardiomyocytes or paracrine support for the activation of endogenous repair mechanisms. Tissue engineering approaches result in enhanced cardiomyocyte retention and sustained remuscularization, but may also be explored for targeted paracrine or mechanical support. Some of the more advanced tissue engineering approaches are already tested clinically; others are at late stages of pre-clinical development. Process optimization towards cGMP compatibility and clinical scalability of contractile engineered human myocardium is an essential step towards clinical translation. Long-term allograft retention can be achieved under immune suppression. HLA matching may be an option to enhance graft retention and reduce the need for comprehensive immune suppression. Summary Tissue-engineered heart repair is entering the clinical stage of the translational pipeline. Like in any effective therapy, side effects must be anticipated and carefully controlled. Allograft implantation under immune suppression is the most likely clinical scenario. Strategies to overcome transplant rejection are evolving and may further boost the clinical acceptance of tissue-engineered heart repair."],["dc.identifier.doi","10.1007/s11886-017-0892-4"],["dc.identifier.gro","3142520"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13675"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/174"],["dc.language.iso","en"],["dc.notes.intern","lifescience updates Crossref Import"],["dc.notes.status","final"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | C04: Fibroblasten-Kardiomyozyten Interaktion im gesunden und erkrankten Herzen: Mechanismen und therapeutische Interventionen bei Kardiofibroblastopathien"],["dc.relation","SFB 1002 | S01: In vivo und in vitro Krankheitsmodelle"],["dc.relation.issn","1523-3782"],["dc.relation.workinggroup","RG Zimmermann (Engineered Human Myocardium)"],["dc.title","Myocardial Tissue Engineering for Regenerative Applications"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.subtype","overview_ja"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","6427"],["dc.bibliographiccitation.journal","International Journal of Nanomedicine"],["dc.bibliographiccitation.lastpage","6428"],["dc.bibliographiccitation.volume","Volume 16"],["dc.contributor.author","Kittana, Naim"],["dc.contributor.author","Assali, Mohyeddin"],["dc.contributor.author","Zimmermann, Wolfram-Hubertus"],["dc.contributor.author","Liaw, Norman"],["dc.contributor.author","Santos, Gabriela Leao"],["dc.contributor.author","Rehman, Abdul"],["dc.contributor.author","Lutz, Susanne"],["dc.date.accessioned","2022-06-08T07:57:29Z"],["dc.date.available","2022-06-08T07:57:29Z"],["dc.date.issued","2021"],["dc.identifier.doi","10.2147/IJN.S339659"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/110104"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-575"],["dc.relation.eissn","1178-2013"],["dc.title","Modulating the Biomechanical Properties of Engineered Connective Tissues by Chitosan-Coated Multiwall Carbon Nanotubes [Corrigendum]"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2015Conference Abstract
    [["dc.bibliographiccitation.journal","Acta Physiologica"],["dc.bibliographiccitation.volume","213"],["dc.contributor.author","Jatho, Aline"],["dc.contributor.author","Kittana, Naim"],["dc.contributor.author","Zimmermann, Wolfram-Hubertus"],["dc.contributor.author","Lutz, S."],["dc.date.accessioned","2018-11-07T09:59:52Z"],["dc.date.available","2018-11-07T09:59:52Z"],["dc.date.issued","2015"],["dc.format.extent","115"],["dc.identifier.isi","000362554200255"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/37688"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.publisher.place","Hoboken"],["dc.relation.issn","1748-1716"],["dc.relation.issn","1748-1708"],["dc.title","RhoA controls myofibroblast characteristics"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details WOS
  • 2009Conference Abstract
    [["dc.bibliographiccitation.journal","The Journal of Physiological Sciences"],["dc.bibliographiccitation.volume","59"],["dc.contributor.author","Zimmermann, Wolfram-Hubertus"],["dc.date.accessioned","2018-11-07T08:34:55Z"],["dc.date.available","2018-11-07T08:34:55Z"],["dc.date.issued","2009"],["dc.format.extent","67"],["dc.identifier.isi","000271023100318"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/17939"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.publisher.place","Tokyo"],["dc.relation.issn","1880-6546"],["dc.title","Electrical Integration of Engineered Heart Tissue"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details WOS