Now showing 1 - 10 of 53
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","cmdc.202100222"],["dc.bibliographiccitation.firstpage","3300"],["dc.bibliographiccitation.issue","21"],["dc.bibliographiccitation.journal","ChemMedChem"],["dc.bibliographiccitation.lastpage","3305"],["dc.bibliographiccitation.volume","16"],["dc.contributor.affiliation","Raad, Farah S.; 1\r\nInstitute of Pharmacology and Toxicology\r\nUniversity Medical Center\r\nGeorg-August-University\r\nGöttingen Germany"],["dc.contributor.affiliation","Khan, Taukeer A.; 2\r\nDZHK (German Center for Cardiovascular Research) – Partner site Göttingen\r\nGöttingen Germany"],["dc.contributor.affiliation","Esser, Tilman U.; 1\r\nInstitute of Pharmacology and Toxicology\r\nUniversity Medical Center\r\nGeorg-August-University\r\nGöttingen Germany"],["dc.contributor.affiliation","Hudson, James E.; 1\r\nInstitute of Pharmacology and Toxicology\r\nUniversity Medical Center\r\nGeorg-August-University\r\nGöttingen Germany"],["dc.contributor.affiliation","Seth, Bhakti Irene; 1\r\nInstitute of Pharmacology and Toxicology\r\nUniversity Medical Center\r\nGeorg-August-University\r\nGöttingen Germany"],["dc.contributor.affiliation","Fujita, Buntaro; 1\r\nInstitute of Pharmacology and Toxicology\r\nUniversity Medical Center\r\nGeorg-August-University\r\nGöttingen Germany"],["dc.contributor.affiliation","Gandamala, Ravi; 3\r\nInstitute of Organic and Biomolecular Chemistry\r\nGeorg-August-University\r\nGöttingen Germany"],["dc.contributor.affiliation","Tietze, Lutz F.; 2\r\nDZHK (German Center for Cardiovascular Research) – Partner site Göttingen\r\nGöttingen Germany"],["dc.contributor.affiliation","Zimmermann, Wolfram-Hubertus; 1\r\nInstitute of Pharmacology and Toxicology\r\nUniversity Medical Center\r\nGeorg-August-University\r\nGöttingen Germany"],["dc.contributor.author","Raad, Farah S."],["dc.contributor.author","Khan, Taukeer A."],["dc.contributor.author","Esser, Tilman U."],["dc.contributor.author","Hudson, James E."],["dc.contributor.author","Seth, Bhakti Irene"],["dc.contributor.author","Fujita, Buntaro"],["dc.contributor.author","Gandamala, Ravi"],["dc.contributor.author","Tietze, Lutz F."],["dc.contributor.author","Zimmermann, Wolfram H."],["dc.date.accessioned","2021-10-01T09:58:46Z"],["dc.date.available","2021-10-01T09:58:46Z"],["dc.date.issued","2021"],["dc.date.updated","2022-03-21T00:45:29Z"],["dc.description.abstract","Abstract Human pluripotent stem cells (hPSCs) hold great promise for applications in cell therapy and drug screening in the cardiovascular field. Bone morphogenetic protein 4 (BMP4) is key for early cardiac mesoderm induction in hPSC and subsequent cardiomyocyte derivation. Small‐molecular BMP4 mimetics may help to standardize cardiomyocyte derivation from hPSCs. Based on observations that chalcones can stimulate BMP4 signaling pathways, we hypothesized their utility in cardiac mesoderm induction. To test this, we set up a two‐tiered screening strategy, (1) for directed differentiation of hPSCs with commercially available chalcones (4’‐hydroxychalcone [4’HC] and Isoliquiritigen) and 24 newly synthesized chalcone derivatives, and (2) a functional screen to assess the propensity of the obtained cardiomyocytes to self‐organize into contractile engineered human myocardium (EHM). We identified 4’HC, 4‐fluoro‐4’‐methoxychalcone, and 4‐fluoro‐4’‐hydroxychalcone as similarly effective in cardiac mesoderm induction, but only 4’HC as an effective replacement for BMP4 in the derivation of contractile EHM‐forming cardiomyocytes."],["dc.description.abstract","Have a little heart: A screen for mesoderm inducing chalcones in human pluripotent stem cell cultures identified 4’‐hydroxychalcone (4’HC) as an effective replacement for bone‐morphogenetic protein 4 (BMP4) in supporting the derivation of engineered heart muscle (EHM)‐formation competent cardiomyocytes. image"],["dc.description.sponsorship","German Center for Cardiovascular Research"],["dc.description.sponsorship","German Federal Ministry for Science and Education"],["dc.description.sponsorship","German Research Foundation http://dx.doi.org/10.13039/501100001659"],["dc.description.sponsorship","Fondation Leducq http://dx.doi.org/10.13039/501100001674"],["dc.identifier.doi","10.1002/cmdc.202100222"],["dc.identifier.pmid","34309224"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/90137"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/432"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-469"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.eissn","1860-7187"],["dc.relation.issn","1860-7179"],["dc.relation.workinggroup","RG Zimmermann (Engineered Human Myocardium)"],["dc.rights","This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited."],["dc.title","Chalcone‐Supported Cardiac Mesoderm Induction in Human Pluripotent Stem Cells for Heart Muscle Engineering"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2017Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","975"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Journal of the American College of Cardiology"],["dc.bibliographiccitation.lastpage","991"],["dc.bibliographiccitation.volume","70"],["dc.contributor.author","Borchert, Thomas"],["dc.contributor.author","Hübscher, Daniela"],["dc.contributor.author","Guessoum, Celina I."],["dc.contributor.author","Lam, Tuan-Dinh D."],["dc.contributor.author","Ghadri, Jelena R."],["dc.contributor.author","Schellinger, Isabel N."],["dc.contributor.author","Tiburcy, Malte"],["dc.contributor.author","Liaw, Norman Y."],["dc.contributor.author","Li, Yun"],["dc.contributor.author","Haas, Jan"],["dc.contributor.author","Sossalla, Samuel"],["dc.contributor.author","Huber, Mia A."],["dc.contributor.author","Cyganek, Lukas"],["dc.contributor.author","Jacobshagen, Claudius"],["dc.contributor.author","Dressel, Ralf"],["dc.contributor.author","Raaz, Uwe"],["dc.contributor.author","Nikolaev, Viacheslav O."],["dc.contributor.author","Guan, Kaomei"],["dc.contributor.author","Thiele, Holger"],["dc.contributor.author","Meder, Benjamin"],["dc.contributor.author","Wollnik, Bernd"],["dc.contributor.author","Zimmermann, Wolfram-Hubertus"],["dc.contributor.author","Lüscher, Thomas F."],["dc.contributor.author","Hasenfuss, Gerd"],["dc.contributor.author","Templin, Christian"],["dc.contributor.author","Streckfuss-Bömeke, Katrin"],["dc.date.accessioned","2018-04-23T11:48:11Z"],["dc.date.available","2018-04-23T11:48:11Z"],["dc.date.issued","2017"],["dc.description.abstract","Background Takotsubo syndrome (TTS) is characterized by an acute left ventricular dysfunction and is associated with life-threating complications in the acute phase. The underlying disease mechanism in TTS is still unknown. A genetic basis has been suggested to be involved in the pathogenesis. Objectives The aims of the study were to establish an in vitro induced pluripotent stem cell (iPSC) model of TTS, to test the hypothesis of altered β-adrenergic signaling in TTS iPSC-cardiomyocytes (CMs), and to explore whether genetic susceptibility underlies the pathophysiology of TTS. Methods Somatic cells of patients with TTS and control subjects were reprogrammed to iPSCs and differentiated into CMs. Three-month-old CMs were subjected to catecholamine stimulation to simulate neurohumoral overstimulation. We investigated β-adrenergic signaling and TTS cardiomyocyte function. Results Enhanced β-adrenergic signaling in TTS-iPSC-CMs under catecholamine-induced stress increased expression of the cardiac stress marker NR4A1; cyclic adenosine monophosphate levels; and cyclic adenosine monophosphate–dependent protein kinase A–mediated hyperphosphorylation of RYR2-S2808, PLN-S16, TNI-S23/24, and Cav1.2-S1928, and leads to a reduced calcium time to transient 50% decay. These cellular catecholamine-dependent responses were mainly mediated by β1-adrenoceptor signaling in TTS. Engineered heart muscles from TTS-iPSC-CMs showed an impaired force of contraction and a higher sensitivity to isoprenaline-stimulated inotropy compared with control subjects. In addition, altered electrical activity and increased lipid accumulation were detected in catecholamine-treated TTS-iPSC-CMs, and were confirmed by differentially expressed lipid transporters CD36 and CPT1C. Furthermore, we uncovered genetic variants in different key regulators of cardiac function. Conclusions Enhanced β-adrenergic signaling and higher sensitivity to catecholamine-induced toxicity were identified as mechanisms associated with the TTS phenotype."],["dc.identifier.doi","10.1016/j.jacc.2017.06.061"],["dc.identifier.gro","3142333"],["dc.identifier.pmid","28818208"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16489"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13468"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/204"],["dc.language.iso","en"],["dc.notes.intern","lifescience updates Crossref Import"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | D01: Erholung aus der Herzinsuffizienz – Einfluss von Fibrose und Transkriptionssignatur"],["dc.relation","SFB 1002 | D02: Neue Mechanismen der genomischen Instabilität bei Herzinsuffizienz"],["dc.relation.issn","0735-1097"],["dc.relation.workinggroup","RG Cyganek (Stem Cell Unit)"],["dc.relation.workinggroup","RG Dressel"],["dc.relation.workinggroup","RG Guan (Application of patient-specific induced pluripotent stem cells in disease modelling)"],["dc.relation.workinggroup","RG Hasenfuß (Transition zur Herzinsuffizienz)"],["dc.relation.workinggroup","RG Nikolaev (Cardiovascular Research Center)"],["dc.relation.workinggroup","RG Sossalla (Kardiovaskuläre experimentelle Elektrophysiologie und Bildgebung)"],["dc.relation.workinggroup","RG Tiburcy (Stem Cell Disease Modeling)"],["dc.relation.workinggroup","RG Wollnik"],["dc.relation.workinggroup","RG Zimmermann (Engineered Human Myocardium)"],["dc.rights","CC BY-NC-ND 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-nd/4.0"],["dc.title","Catecholamine-Dependent β-Adrenergic Signaling in a Pluripotent Stem Cell Model of Takotsubo Cardiomyopathy"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2019Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","51"],["dc.bibliographiccitation.journal","Progress in Biophysics and Molecular Biology"],["dc.bibliographiccitation.lastpage","60"],["dc.bibliographiccitation.volume","144"],["dc.contributor.author","Schlick, Susanne F."],["dc.contributor.author","Spreckelsen, Florian"],["dc.contributor.author","Tiburcy, Malte"],["dc.contributor.author","Iyer, Lavanya M."],["dc.contributor.author","Meyer, Tim"],["dc.contributor.author","Zelarayan, Laura C."],["dc.contributor.author","Luther, Stefan"],["dc.contributor.author","Parlitz, Ulrich"],["dc.contributor.author","Zimmermann, Wolfram-Hubertus"],["dc.contributor.author","Rehfeldt, Florian"],["dc.date.accessioned","2020-12-10T15:20:42Z"],["dc.date.available","2020-12-10T15:20:42Z"],["dc.date.issued","2019"],["dc.description.abstract","Cardiomyocyte and stroma cell cross-talk is essential for the formation of collagen-based engineered heart muscle, including engineered human myocardium (EHM). Fibroblasts are a main component of the myocardial stroma. We hypothesize that fibroblasts, by compacting the surrounding collagen network, support the self-organization of cardiomyocytes into a functional syncytium. With a focus on early self-organization processes in EHM, we studied the molecular and biophysical adaptations mediated by defined populations of fibroblasts and embryonic stem cell-derived cardiomyocytes in a collagen type I hydrogel. After a short phase of cell-independent collagen gelation (30 min), tissue compaction was progressively mediated by fibroblasts. Fibroblast-mediated tissue stiffening was attenuated in the presence of cardiomyocytes allowing for the assembly of stably contracting, force-generating EHM within 4 weeks. Comparative RNA-sequencing data corroborated that fibroblasts are particularly sensitive to the tissue compaction process, resulting in the fast activation of transcription profiles, supporting heart muscle development and extracellular matrix synthesis. Large amplitude oscillatory shear (LAOS) measurements revealed nonlinear strain stiffening at physiological strain amplitudes (>2%), which was reduced in the presence of cells. The nonlinear stress-strain response could be characterized by a mathematical model. Collectively, our study defines the interplay between fibroblasts and cardiomyocytes during human heart muscle self-organization in vitro and underscores the relevance of fibroblasts in the biological engineering of a cardiomyogenesis-supporting viscoelastic stroma. We anticipate that the established mathematical model will facilitate future attempts to optimize EHM for in vitro (disease modelling) and in vivo applications (heart repair)."],["dc.identifier.doi","10.1016/j.pbiomolbio.2018.11.011"],["dc.identifier.pmid","30553553"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/72769"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/248"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | C04: Fibroblasten-Kardiomyozyten Interaktion im gesunden und erkrankten Herzen: Mechanismen und therapeutische Interventionen bei Kardiofibroblastopathien"],["dc.relation","SFB 1002 | S01: In vivo und in vitro Krankheitsmodelle"],["dc.relation.workinggroup","RG Luther (Biomedical Physics)"],["dc.relation.workinggroup","RG Tiburcy (Stem Cell Disease Modeling)"],["dc.relation.workinggroup","RG Zelarayán-Behrend (Developmental Pharmacology)"],["dc.relation.workinggroup","RG Zimmermann (Engineered Human Myocardium)"],["dc.rights","CC BY 4.0"],["dc.title","Agonistic and antagonistic roles of fibroblasts and cardiomyocytes on viscoelastic stiffening of engineered human myocardium"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2019Journal Article Research Paper
    [["dc.bibliographiccitation.journal","Frontiers in Physiology"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Trautsch, Irina"],["dc.contributor.author","Heta, Eriona"],["dc.contributor.author","Soong, Poh Loong"],["dc.contributor.author","Levent, Elif"],["dc.contributor.author","Nikolaev, Viacheslav O."],["dc.contributor.author","Bogeski, Ivan"],["dc.contributor.author","Katschinski, Dörthe M."],["dc.contributor.author","Mayr, Manuel"],["dc.contributor.author","Zimmermann, Wolfram-Hubertus"],["dc.date.accessioned","2020-12-10T18:44:38Z"],["dc.date.available","2020-12-10T18:44:38Z"],["dc.date.issued","2019"],["dc.description.abstract","Redox signaling affects all aspects of cardiac function and homeostasis. With the development of genetically encoded fluorescent redox sensors, novel tools for the optogenetic investigation of redox signaling have emerged. Here, we sought to develop a human heart muscle model for in-tissue imaging of redox alterations. For this, we made use of (1) the genetically-encoded Grx1-roGFP2 sensor, which reports changes in cellular glutathione redox status (GSH/GSSG), (2) human embryonic stem cells (HES2), and (3) the engineered heart muscle (EHM) technology. We first generated HES2 lines expressing Grx1-roGFP2 in cytosol or mitochondria compartments by TALEN-guided genomic integration. Grx1-roGFP2 sensor localization and function was verified by fluorescence imaging. Grx1-roGFP2 HES2 were then subjected to directed differentiation to obtain high purity cardiomyocyte populations. Despite being able to report glutathione redox potential from cytosol and mitochondria, we observed dysfunctional sarcomerogenesis in Grx1-roGFP2 expressing cardiomyocytes. Conversely, lentiviral transduction of Grx1-roGFP2 in already differentiated HES2-cardiomyocytes and human foreskin fibroblast was possible, without compromising cell function as determined in EHM from defined Grx1-roGFP2-expressing cardiomyocyte and fibroblast populations. Finally, cell-type specific GSH/GSSG imaging was demonstrated in EHM. Collectively, our observations suggests a crucial role for redox signaling in cardiomyocyte differentiation and provide a solution as to how this apparent limitation can be overcome to enable cell-type specific GSH/GSSG imaging in a human heart muscle context."],["dc.identifier.doi","10.3389/fphys.2019.00272"],["dc.identifier.pmid","31024328"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/78535"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/265"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/67"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | C04: Fibroblasten-Kardiomyozyten Interaktion im gesunden und erkrankten Herzen: Mechanismen und therapeutische Interventionen bei Kardiofibroblastopathien"],["dc.relation","SFB 1002 | S01: In vivo und in vitro Krankheitsmodelle"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P17: Die Rolle mitochondrialer Kontaktstellen im Rahmen tumorrelevanter Calcium- und Redox-Signalwege"],["dc.relation.eissn","1664-042X"],["dc.relation.workinggroup","RG Nikolaev (Cardiovascular Research Center)"],["dc.relation.workinggroup","RG Zimmermann (Engineered Human Myocardium)"],["dc.relation.workinggroup","RG Bogeski"],["dc.rights","http://creativecommons.org/licenses/by/4.0/"],["dc.title","Optogenetic Monitoring of the Glutathione Redox State in Engineered Human Myocardium"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2015Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","e0137519"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","PLoS ONE"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Jatho, Aline"],["dc.contributor.author","Hartmann, Svenja"],["dc.contributor.author","Kittana, Naim"],["dc.contributor.author","Muegge, Felicitas"],["dc.contributor.author","Wuertz, Christina M."],["dc.contributor.author","Tiburcy, Malte"],["dc.contributor.author","Zimmermann, Wolfram-Hubertus"],["dc.contributor.author","Katschinski, Dörthe M."],["dc.contributor.author","Lutz, Susanne"],["dc.date.accessioned","2017-09-07T11:43:28Z"],["dc.date.available","2017-09-07T11:43:28Z"],["dc.date.issued","2015"],["dc.description.abstract","Introduction RhoA has been shown to be beneficial in cardiac disease models when overexpressed in cardiomyocytes, whereas its role in cardiac fibroblasts (CF) is still poorly understood. During cardiac remodeling CF undergo a transition towards a myofibroblast phenotype thereby showing an increased proliferation and migration rate. Both processes involve the remodeling of the cytoskeleton. Since RhoA is known to be a major regulator of the cytoskeleton, we analyzed its role in CF and its effect on myofibroblast characteristics in 2 D and 3D models. Results Downregulation of RhoA was shown to strongly affect the actin cytoskeleton. It decreased the myofibroblast marker alpha-sm-actin, but increased certain fibrosis-associated factors like TGF-beta and collagens. Also, the detailed analysis of CTGF expression demonstrated that the outcome of RhoA signaling strongly depends on the involved stimulus. Furthermore, we show that proliferation of myofibroblasts rely on RhoA and tubulin acetylation. In assays accessing three different types of migration, we demonstrate that RhoA/ROCK/Dia1 are important for 2D migration and the repression of RhoA and Dia1 signaling accelerates 3D migration. Finally, we show that a downregulation of RhoA in CF impacts the viscoelastic and contractile properties of engineered tissues. Conclusion RhoA positively and negatively influences myofibroblast characteristics by differential signaling cascades and depending on environmental conditions. These include gene expression, migration and proliferation. Reduction of RhoA leads to an increased viscoelasticity and a decrease in contractile force in engineered cardiac tissue."],["dc.description.sponsorship","Open-Access Publikationsfonds 2015"],["dc.identifier.doi","10.1371/journal.pone.0137519"],["dc.identifier.gro","3141809"],["dc.identifier.isi","000362511000003"],["dc.identifier.pmid","26448568"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/12214"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1312"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/118"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | C02: RhoGTPasen und ihre Bedeutung für die Last-abhängige Myokardfibrose"],["dc.relation","SFB 1002 | C04: Fibroblasten-Kardiomyozyten Interaktion im gesunden und erkrankten Herzen: Mechanismen und therapeutische Interventionen bei Kardiofibroblastopathien"],["dc.relation","SFB 1002 | C06: Mechanismen und Regulation der koronaren Gefäßneubildung"],["dc.relation.issn","1932-6203"],["dc.relation.workinggroup","RG Lutz (G Protein-Coupled Receptor Mediated Signaling)"],["dc.relation.workinggroup","RG Tiburcy (Stem Cell Disease Modeling)"],["dc.relation.workinggroup","RG Zimmermann (Engineered Human Myocardium)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","RhoA Ambivalently Controls Prominent Myofibroblast Characteritics by Involving Distinct Signaling Routes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2017Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","127"],["dc.bibliographiccitation.journal","Stem Cell Research"],["dc.bibliographiccitation.lastpage","131"],["dc.bibliographiccitation.volume","23"],["dc.contributor.author","Noack, Claudia"],["dc.contributor.author","Haupt, Luis Peter"],["dc.contributor.author","Zimmermann, Wolfram-Hubertus"],["dc.contributor.author","Streckfuss-Bömeke, Katrin"],["dc.contributor.author","Zelarayán, Laura Cecilia"],["dc.date.accessioned","2018-04-23T11:49:22Z"],["dc.date.available","2018-04-23T11:49:22Z"],["dc.date.issued","2017"],["dc.description.abstract","Krueppel-like factor 15 (KLF15) is abundantly expressed in liver, kidney, and muscle, including myocardium. In the adult heart KLF15 is important to maintain homeostasis and to repress hypertrophic remodeling. We generated a homozygous hESC KLF15 knockout (KO) line using paired CRISPR/Cas9n. KLF15-KO cells maintained full pluripotency and differentiation potential as well as genomic integrity. We demonstrated that KLF15-KO cells can be differentiated into morphologically normal cardiomyocytes turning them into a valuable tool for studying human KLF15-mediated mechanisms resulting in human cardiac dysfunction."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2017"],["dc.identifier.doi","10.1016/j.scr.2017.07.007"],["dc.identifier.gro","3142524"],["dc.identifier.pmid","28925362"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14618"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13680"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/175"],["dc.language.iso","en"],["dc.notes.intern","lifescience updates Crossref Import"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | C04: Fibroblasten-Kardiomyozyten Interaktion im gesunden und erkrankten Herzen: Mechanismen und therapeutische Interventionen bei Kardiofibroblastopathien"],["dc.relation","SFB 1002 | C07: Kardiomyozyten Wnt/β-catenin Komplex Aktivität im pathologischen Herz-Remodeling - als gewebespezifischer therapeutischer Ansatz"],["dc.relation","SFB 1002 | S01: In vivo und in vitro Krankheitsmodelle"],["dc.relation.issn","1873-5061"],["dc.relation.workinggroup","RG Zelarayán-Behrend (Developmental Pharmacology)"],["dc.relation.workinggroup","RG Zimmermann (Engineered Human Myocardium)"],["dc.rights","CC BY-NC-ND 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-nd/4.0"],["dc.title","Generation of a KLF15 homozygous knockout human embryonic stem cell line using paired CRISPR/Cas9n, and human cardiomyocytes derivation"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2017Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","9"],["dc.bibliographiccitation.journal","Journal of Molecular and Cellular Cardiology"],["dc.bibliographiccitation.lastpage","21"],["dc.bibliographiccitation.volume","113"],["dc.contributor.author","Streckfuss-Bömeke, Katrin"],["dc.contributor.author","Tiburcy, Malte"],["dc.contributor.author","Fomin, Andrey"],["dc.contributor.author","Luo, Xiaojing"],["dc.contributor.author","Li, Wener"],["dc.contributor.author","Fischer, Claudia"],["dc.contributor.author","Özcelik, Cemil"],["dc.contributor.author","Perrot, Andreas"],["dc.contributor.author","Sossalla, Samuel"],["dc.contributor.author","Haas, Jan"],["dc.contributor.author","Vidal, Ramon Oliveira"],["dc.contributor.author","Rebs, Sabine"],["dc.contributor.author","Khadjeh, Sara"],["dc.contributor.author","Meder, Benjamin"],["dc.contributor.author","Bonn, Stefan"],["dc.contributor.author","Linke, Wolfgang A."],["dc.contributor.author","Zimmermann, Wolfram-Hubertus"],["dc.contributor.author","Guan, Kaomei"],["dc.contributor.author","Hasenfuss, Gerd"],["dc.date.accessioned","2018-04-23T11:49:17Z"],["dc.date.available","2018-04-23T11:49:17Z"],["dc.date.issued","2017"],["dc.description.abstract","The ability to generate patient-specific induced pluripotent stem cells (iPSCs) provides a unique opportunity for modeling heart disease in vitro. In this study, we generated iPSCs from a patient with dilated cardiomyopathy (DCM) caused by a missense mutation S635A in RNA-binding motif protein 20 (RBM20) and investigated the functionality and cell biology of cardiomyocytes (CMs) derived from patient-specific iPSCs (RBM20-iPSCs). The RBM20-iPSC-CMs showed abnormal distribution of sarcomeric α-actinin and defective calcium handling compared to control-iPSC-CMs, suggesting disorganized myofilament structure and altered calcium machinery in CMs of the RBM20 patient. Engineered heart muscles (EHMs) from RBM20-iPSC-CMs showed that not only active force generation was impaired in RBM20-EHMs but also passive stress of the tissue was decreased, suggesting a higher visco-elasticity of RBM20-EHMs. Furthermore, we observed a reduced titin (TTN) N2B-isoform expression in RBM20-iPSC-CMs by demonstrating a reduction of exon skipping in the PEVK region of TTN and an inhibition of TTN isoform switch. In contrast, in control-iPSC-CMs both TTN isoforms N2B and N2BA were expressed, indicating that the TTN isoform switch occurs already during early cardiogenesis. Using next generation RNA sequencing, we mapped transcriptome and splicing target profiles of RBM20-iPSC-CMs and identified different cardiac gene networks in response to the analyzed RBM20 mutation in cardiac-specific processes. These findings shed the first light on molecular mechanisms of RBM20-dependent pathological cardiac remodeling leading to DCM. Our data demonstrate that iPSC-CMs coupled with EHMs provide a powerful tool for evaluating disease-relevant functional defects and for a deeper mechanistic understanding of alternative splicing-related cardiac diseases."],["dc.identifier.doi","10.1016/j.yjmcc.2017.09.008"],["dc.identifier.gro","3142517"],["dc.identifier.pmid","28941705"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16493"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13672"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/191"],["dc.language.iso","en"],["dc.notes.intern","lifescience updates Crossref Import"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A08: Translationale und posttranslationale Kontrolle trunkierter Titinproteine in Kardiomyozyten von Patienten mit dilatativer Kardiomyopathie"],["dc.relation","SFB 1002 | C04: Fibroblasten-Kardiomyozyten Interaktion im gesunden und erkrankten Herzen: Mechanismen und therapeutische Interventionen bei Kardiofibroblastopathien"],["dc.relation","SFB 1002 | D01: Erholung aus der Herzinsuffizienz – Einfluss von Fibrose und Transkriptionssignatur"],["dc.relation.issn","0022-2828"],["dc.relation.workinggroup","RG Guan (Application of patient-specific induced pluripotent stem cells in disease modelling)"],["dc.relation.workinggroup","RG Hasenfuß (Transition zur Herzinsuffizienz)"],["dc.relation.workinggroup","RG Linke (Kardiovaskuläre Physiologie)"],["dc.relation.workinggroup","RG Sossalla (Kardiovaskuläre experimentelle Elektrophysiologie und Bildgebung)"],["dc.relation.workinggroup","RG Tiburcy (Stem Cell Disease Modeling)"],["dc.relation.workinggroup","RG Zimmermann (Engineered Human Myocardium)"],["dc.rights","CC BY-NC-ND 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-nd/4.0"],["dc.title","Severe DCM phenotype of patient harboring RBM20 mutation S635A can be modeled by patient-specific induced pluripotent stem cell-derived cardiomyocytes"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2019Journal Article
    [["dc.bibliographiccitation.firstpage","272"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","European Journal of Heart Failure"],["dc.bibliographiccitation.lastpage","285"],["dc.bibliographiccitation.volume","21"],["dc.contributor.author","de Boer, Rudolf A."],["dc.contributor.author","De Keulenaer, Gilles"],["dc.contributor.author","Bauersachs, Johann"],["dc.contributor.author","Brutsaert, Dirk"],["dc.contributor.author","Cleland, John G."],["dc.contributor.author","Diez, Javier"],["dc.contributor.author","Du, Xiao‐Jun"],["dc.contributor.author","Ford, Paul"],["dc.contributor.author","Heinzel, Frank R."],["dc.contributor.author","Lipson, Kenneth E."],["dc.contributor.author","McDonagh, Theresa"],["dc.contributor.author","Lopez‐Andres, Natalia"],["dc.contributor.author","Lunde, Ida G."],["dc.contributor.author","Lyon, Alexander R."],["dc.contributor.author","Pollesello, Piero"],["dc.contributor.author","Prasad, Sanjay K."],["dc.contributor.author","Tocchetti, Carlo G."],["dc.contributor.author","Mayr, Manuel"],["dc.contributor.author","Sluijter, Joost P.G."],["dc.contributor.author","Thum, Thomas"],["dc.contributor.author","Tschöpe, Carsten"],["dc.contributor.author","Zannad, Faiez"],["dc.contributor.author","Zimmermann, Wolfram-Hubertus"],["dc.contributor.author","Ruschitzka, Frank"],["dc.contributor.author","Filippatos, Gerasimos"],["dc.contributor.author","Lindsey, Merry L."],["dc.contributor.author","Maack, Christoph"],["dc.contributor.author","Heymans, Stephane"],["dc.date.accessioned","2019-07-09T11:50:51Z"],["dc.date.available","2019-07-09T11:50:51Z"],["dc.date.issued","2019"],["dc.description.abstract","Fibrosis is a pivotal player in heart failure development and progression. Measurements of (markers of) fibrosis in tissue and blood may help to diagnose and risk stratify patients with heart failure, and its treatment may be effective in preventing heart failure and its progression. A lack of pathophysiological insights and uniform definitions has hampered the research in fibrosis and heart failure. The Translational Research Committee of the Heart Failure Association discussed several aspects of fibrosis in their workshop. Early insidious perturbations such as subclinical hypertension or inflammation may trigger first fibrotic events, while more dramatic triggers such as myocardial infarction and myocarditis give rise to full blown scar formation and ongoing fibrosis in diseased hearts. Aging itself is also associated with a cardiac phenotype that includes fibrosis. Fibrosis is an extremely heterogeneous phenomenon, as several stages of the fibrotic process exist, each with different fibrosis subtypes and a different composition of various cells and proteins - resulting in a very complex pathophysiology. As a result, detection of fibrosis, e.g. using current cardiac imaging modalities or plasma biomarkers, will detect only specific subforms of fibrosis, but cannot capture all aspects of the complex fibrotic process. Furthermore, several anti-fibrotic therapies are under investigation, but such therapies generally target aspecific aspects of the fibrotic process and suffer from a lack of precision. This review discusses the mechanisms and the caveats and proposes a roadmap for future research."],["dc.identifier.doi","10.1002/ejhf.1406"],["dc.identifier.pmid","30714667"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16014"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59843"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/305507/EU//HOMAGE"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/602904/EU//FIBRO-TARGETS"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/602156/EU//HECATOS"],["dc.rights","CC BY-NC 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc/4.0"],["dc.subject.ddc","610"],["dc.title","Towards better definition, quantification and treatment of fibrosis in heart failure. A scientific roadmap by the Committee of Translational Research of the Heart Failure Association (HFA) of the European Society of Cardiology"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2011Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","263"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Basic Research in Cardiology"],["dc.bibliographiccitation.lastpage","272"],["dc.bibliographiccitation.volume","106"],["dc.contributor.author","Sossalla, Samuel"],["dc.contributor.author","Maurer, Ulrike"],["dc.contributor.author","Schotola, Hanna"],["dc.contributor.author","Hartmann, Nico H."],["dc.contributor.author","Didie, Michael"],["dc.contributor.author","Zimmermann, Wolfram-Hubertus"],["dc.contributor.author","Jacobshagen, Claudius"],["dc.contributor.author","Wagner, Stefan"],["dc.contributor.author","Maier, Lars S."],["dc.date.accessioned","2017-09-07T11:44:20Z"],["dc.date.available","2017-09-07T11:44:20Z"],["dc.date.issued","2011"],["dc.description.abstract","Transgenic (TG) Ca2+/calmodulin-dependent protein kinase II (CaMKII) delta(C) mice develop systolic heart failure (HF). CaMKII regulates intracellular Ca2+ handling proteins as well as sarcolemmal Na+ channels. We hypothesized that CaMKII also contributes to diastolic dysfunction and arrhythmias via augmentation of the late Na+ current (late I (Na)) in early HF (8-week-old TG mice). Echocardiography revealed severe diastolic dysfunction in addition to decreased systolic ejection fraction. Premature arrhythmogenic contractions (PACs) in isolated isometrically twitching papillary muscles only occurred in TG preparations (5 vs. 0, P < 0.05) which could be completely terminated when treated with the late I (Na) inhibitor ranolazine (Ran, 5 mu mol/L). Force-frequency relationships revealed significantly reduced twitch force amplitudes in TG papillary muscles. Most importantly, diastolic tension increased with raising frequencies to a greater extent in TG papillary muscles compared to WT specimen (at 10 Hz: 3.7 +/- A 0.4 vs. 2.5 +/- A 0.3 mN/mm(2); P < 0.05). Addition of Ran improved diastolic dysfunction to 2.1 +/- A 0.2 mN/mm(2) (at 10 Hz; P < 0.05) without negative inotropic effects. Mechanistically, the late I (Na) was markedly elevated in myocytes isolated from TG mice and could be completely reversed by Ran. In conclusion, our results show for the first time that TG CaMKII delta(C) overexpression induces diastolic dysfunction and arrhythmogenic triggers possibly via an enhanced late I (Na). Inhibition of elevated late I (Na) had beneficial effects on arrhythmias as well as diastolic function in papillary muscles from CaMKII delta(C) TG mice. Thus, late I (Na) inhibition appears to be a promising option for diastolic dysfunction and arrhythmias in HF where CaMKII is found to be increased."],["dc.identifier.doi","10.1007/s00395-010-0136-x"],["dc.identifier.gro","3142765"],["dc.identifier.isi","000286934300008"],["dc.identifier.pmid","21174213"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/7315"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/205"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Springer"],["dc.publisher.place","Heidelberg"],["dc.relation.issn","0300-8428"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Diastolic dysfunction and arrhythmias caused by overexpression of CaMKII delta(C) can be reversed by inhibition of late Na+ current"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2009Conference Paper Research Paper
    [["dc.bibliographiccitation.firstpage","716"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.lastpage","723"],["dc.bibliographiccitation.volume","30"],["dc.contributor.author","Zimmermann, Wolfram-Hubertus"],["dc.contributor.author","Cesnjevar, Robert"],["dc.date.accessioned","2017-09-07T11:47:25Z"],["dc.date.available","2017-09-07T11:47:25Z"],["dc.date.issued","2009"],["dc.description.abstract","Children with severe congenital malformations, such as single-ventricle anomalies, have a daunting prognosis. Heart transplantation would be a therapeutic option but is restricted due to a lack of suitable donor organs and, even in case of successful heart transplantation, lifelong immune suppression would frequently be associated with a number of serious side effects. As an alternative to heart transplantation and classical cardiac reconstructive surgery, tissue-engineered myocardium might become available to augment hypomorphic hearts and/or provide new muscle material for complex myocardial reconstruction. These potential applications of tissue engineered myocardium will, however, impose major challenges to cardiac tissue engineers as well as heart surgeons. This review will provide an overview of available cardiac tissue-engineering technologies, discuss limitations, and speculate on a potential application of tissue-engineered heart muscle in pediatric heart surgery."],["dc.identifier.doi","10.1007/s00246-009-9405-6"],["dc.identifier.gro","3143094"],["dc.identifier.isi","000267033500017"],["dc.identifier.pmid","19319461"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?goescholar/3491"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/571"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Springer"],["dc.publisher.place","New york"],["dc.relation.conference","Riley-Heart-Center Symposium on Cardiac Development - Growth and Morphogenesis of the Ventricular Wall"],["dc.relation.eventlocation","Indiana Univ Sch Med, Bloomington, IN"],["dc.relation.ispartof","Pediatric Cardiology"],["dc.relation.issn","0172-0643"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Cardiac Tissue Engineering: Implications for Pediatric Heart Surgery"],["dc.type","conference_paper"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS