Options
Brüdern, Jörg
Loading...
Preferred name
Brüdern, Jörg
Official Name
Brüdern, Jörg
Alternative Name
Brüdern, J.
Bruedern, Joerg
Bruedern, J.
Main Affiliation
Now showing 1 - 2 of 2
2012Book Chapter [["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.lastpage","15"],["dc.bibliographiccitation.seriesnr","9"],["dc.contributor.author","Blomer, Valentin"],["dc.contributor.author","Brüdern, Jörg"],["dc.contributor.editor","Blomer, Valentin"],["dc.contributor.editor","Mihailescu, Preda"],["dc.date.accessioned","2017-09-07T11:51:15Z"],["dc.date.available","2017-09-07T11:51:15Z"],["dc.date.issued","2012"],["dc.identifier.gro","3146047"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/3791"],["dc.language.iso","en"],["dc.notes.status","public"],["dc.notes.submitter","chake"],["dc.publisher","Springer"],["dc.publisher.place","New York, NY"],["dc.relation.crisseries","Springer Proceedings in Mathematics"],["dc.relation.isbn","978-1-4614-1218-2"],["dc.relation.ispartof","Contributions in analytic and algebraic number theory"],["dc.relation.ispartofseries","Springer proceedings in mathematics; 9"],["dc.relation.issn","2190-5614"],["dc.title","The density of rational points on a certain threefold"],["dc.type","book_chapter"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details2012Book Chapter [["dc.bibliographiccitation.firstpage","31"],["dc.bibliographiccitation.lastpage","82"],["dc.contributor.author","Brüdern, Jörg"],["dc.contributor.editor","Blomer, Valentin"],["dc.contributor.editor","Mihăilescu, Preda"],["dc.date.accessioned","2017-09-07T11:51:09Z"],["dc.date.available","2017-09-07T11:51:09Z"],["dc.date.issued","2012"],["dc.description.abstract","Following ideas of Daniel, a function analogous to Hooley’s Delta function is constructed for multiplicative functions with values in the unit disc. When the multiplicative function is of oscillatory nature, moments of the new Delta function are smaller than those for Hooley’s original. Similar ideas apply to incomplete convolutions if the multiplicative function satisfies a more rigid condition that is best expressed in terms of its generating Dirichlet series. The most prominent example where the theory applies is the Möbius function, thus providing some new insights into its value distribution."],["dc.identifier.doi","10.1007/978-1-4614-1219-9_3"],["dc.identifier.gro","3146046"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/3788"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.publisher","Springer"],["dc.publisher.place","New York, NY"],["dc.relation.crisseries","Springer Proceedings in Mathematics"],["dc.relation.doi","10.1007/978-1-4614-1219-9"],["dc.relation.eisbn","978-1-4614-1219-9"],["dc.relation.isbn","978-1-4614-1218-2"],["dc.relation.ispartof","Contributions in analytic and algebraic number theory: Festschrift for S. J. Patterson"],["dc.relation.ispartofseries","Springer Proc. Math.;"],["dc.title","Daniel's twists of Hooley's delta function"],["dc.type","book_chapter"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI