Options
Burfeind, Peter
Loading...
Preferred name
Burfeind, Peter
Official Name
Burfeind, Peter
Alternative Name
Burfeind, P.
Main Affiliation
Now showing 1 - 10 of 15
2003Journal Article [["dc.bibliographiccitation.firstpage","543"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","American Journal Of Pathology"],["dc.bibliographiccitation.lastpage","552"],["dc.bibliographiccitation.volume","163"],["dc.contributor.author","Grzmil, M."],["dc.contributor.author","Thelen, Paul"],["dc.contributor.author","Hemmerlein, Bernhard"],["dc.contributor.author","Schweyer, Stefan"],["dc.contributor.author","Voigt, S."],["dc.contributor.author","Mury, D."],["dc.contributor.author","Burfeind, Peter"],["dc.date.accessioned","2018-11-07T10:37:03Z"],["dc.date.available","2018-11-07T10:37:03Z"],["dc.date.issued","2003"],["dc.description.abstract","To analyze differential gene expression of putative prostate tumor markers we compared the expression levels of more than 400 cancer-related genes using the cDNA array technique in a set of capsule-invasive prostate tumor and matched normal prostate tissue. The overexpression. of Bax inhibitor-1 (BI-1) in prostate carcinoma and prostate cancer cell lines was confirmed by using Northern blot and Western blot analyses. Quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) on intact RNAs from 17 paired laser-captured microdissected epithelial tissue samples confirmed up-regulated BI-1 expression in 11 of 17 prostate tumors. In addition, it was demonstrated that BI-1 expression is down-regulated in stromal cells as. compared to matched normal epithelial cells of the prostate. In situ hybridization experiments on prostate sections also revealed that BI-1 expression is mainly restricted to epithelial cells. Furthermore, quantitative RT-PCR on RNAs derived from five benign prostate hyperplasia (BPH) samples showed no significant difference in BI-1 expression as compared to normal epithelial prostate tissue. To determine the function of BI-1 in vitro, human PC-3, LNCaP, and DU-145 prostate carcinoma cells were transfected with small interfering double-strand RNA (siRNA) oligonucleotides against the BI-1 gene leading to a specific down-regulation of BI-1 expression. Furthermore, transfection of PC-3, LNCaP, and DU-145 cells with BI-1 sequence-specific siRNAs caused a significant increase in spontaneous apoptosis in all cell lines. Taken together, our results indicate that the human BI-1 gene contains the potential to serve as a prostate cancer expression marker and as a potential target for developing therapeutic strategies for prostate cancer."],["dc.identifier.doi","10.1016/S0002-9440(10)63682-6"],["dc.identifier.isi","000184366400016"],["dc.identifier.pmid","12875974"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/45473"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Amer Soc Investigative Pathology, Inc"],["dc.relation.issn","0002-9440"],["dc.title","Bax inhibitor-1 is overexpressed in prostate cancer and its specific down-regulation by RNA interference leads to cell death in human prostate carcinoma cells"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2007Journal Article [["dc.bibliographiccitation.firstpage","2626"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Molecular Cancer Therapeutics"],["dc.bibliographiccitation.lastpage","2633"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Stettner, Mark"],["dc.contributor.author","Kaulfuss, Silke"],["dc.contributor.author","Burfeind, Peter"],["dc.contributor.author","Schweyer, Stefan"],["dc.contributor.author","Strauss, Arne"],["dc.contributor.author","Ringert, Rolf-Hermann"],["dc.contributor.author","Thelen, Paul"],["dc.date.accessioned","2018-11-07T10:58:18Z"],["dc.date.available","2018-11-07T10:58:18Z"],["dc.date.issued","2007"],["dc.description.abstract","In the prostate, estrogen receptor beta (ER beta), the preferred receptor for phytoestrogens, has features of a tumor suppressor. To investigate the mechanisms underlying the beneficial effects on prostate cancer of histone deacetylase inhibitor valproic acid (VPA) and phytoestrogen tectorigenin, we analyzed the expression of ER after tectorigenin or VPA treatment. For further functional analysis, we knocked down ER beta expression by RNA interference. LNCaP prostate cancer cells were treated with 5 mmol/L VPA or 100 mu mol/L tectorigenin and transfected with small interfering RNA (siRNA) against ER beta. Control transfections were done with luciferase (LUC) siRNA. Expression of ER beta was assessed by Western blot. mRNA expression was quantitated by real-time reverse transcription-PCR. Expression of ER beta mRNA and protein markedly increased after VPA or tectorigenin treatment. When ER beta was knocked down by siRNA, the expression of prostate-derived Ets factor, prostate-specific antigen, prostate cancer-specific indicator gene DD3(PCA3), insulin-like growth factor-1 receptor, the catalytic subunit of the telomerase, and ER beta was up-regulated and the tectorigenin effects were abrogated. ER beta levels were diminished in prostate cancer and loss of ER beta was associated with proliferation. Here, we show that siRNA-mediated knockdown of ER beta increases the expression of genes highly relevant to tumor cell proliferation. In addition, we show that one prominent result of treatment with VPA or tectorigenin is the up-regulation of ER beta resulting in antiproliferative effects. Thus, these drugs, by restoring the regulatory function of ER in tumor cells, could become useful in the intervention of prostate cancer."],["dc.identifier.doi","10.1158/1535-7163.MCT-07-0197"],["dc.identifier.isi","000250252100003"],["dc.identifier.pmid","17913855"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/50445"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Amer Assoc Cancer Research"],["dc.relation.issn","1535-7163"],["dc.title","The relevance of estrogen receptor-beta expression to the antiproliferative effects observed with histone deacetylase inhibitors and phytoestrogens in prostate cancer treatment"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2017Journal Article [["dc.bibliographiccitation.firstpage","34971"],["dc.bibliographiccitation.issue","21"],["dc.bibliographiccitation.journal","Oncotarget"],["dc.bibliographiccitation.lastpage","34979"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Gehrig, Julia"],["dc.contributor.author","Kaulfuss, Silke"],["dc.contributor.author","Jarry, Hubertus"],["dc.contributor.author","Bremmer, Felix"],["dc.contributor.author","Stettner, Mark"],["dc.contributor.author","Burfeind, Peter"],["dc.contributor.author","Thelen, Paul"],["dc.date.accessioned","2018-11-07T10:23:41Z"],["dc.date.available","2018-11-07T10:23:41Z"],["dc.date.issued","2017"],["dc.description.abstract","Advanced prostate cancer can develop into castration-resistant prostate cancer (CRPC). This process is mediated either by intratumoral ligand synthesis or by mutations or aberrations of the androgen receptor (AR) or its cofactors. To date, no curative therapy for CRPC is available, as AR-targeted therapies eventually result in the development of resistance. The human prostate cancer cell line VCaP (vertebral cancer of the prostate) overexpresses AR and its splice variants (ARVs) as a mechanism of resistance to androgen-deprivation therapy (ADT) of external and intratumoral origin. In the present study, we demonstrate that stimulating estrogen receptor beta activity with the specific agonist 8 beta-VE2 in VCaP cells in successive stages of ADT induced a time-and dose-dependent decrease in cell survival and an increase in apoptosis. Furthermore, 8 beta-VE2 treatment reduced the overexpression of the AR as well as ARVs in VCaP cells under maximum ADT. Our results indicate that decreased survival of the androgen-dependent CRPC cells employing apoptosis together with the regulative effect on AR expression could have beneficial effects over current AR-targeting therapies."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2017"],["dc.identifier.doi","10.18632/oncotarget.16496"],["dc.identifier.isi","000402051700085"],["dc.identifier.pmid","28380417"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14426"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/42509"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Impact Journals Llc"],["dc.relation.issn","1949-2553"],["dc.rights","CC BY 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/3.0"],["dc.title","Prospects of estrogen receptor beta activation in the treatment of castration-resistant prostate cancer"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2004Journal Article [["dc.bibliographiccitation.firstpage","1085"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","International Journal of Oncology"],["dc.bibliographiccitation.lastpage","1092"],["dc.bibliographiccitation.volume","24"],["dc.contributor.author","Thelen, Paul"],["dc.contributor.author","Burfeind, Peter"],["dc.contributor.author","Grzmil, M."],["dc.contributor.author","Voigt, S."],["dc.contributor.author","Ringert, Rolf-Hermann"],["dc.contributor.author","Hemmerlein, Bernhard"],["dc.date.accessioned","2018-11-07T10:49:16Z"],["dc.date.available","2018-11-07T10:49:16Z"],["dc.date.issued","2004"],["dc.description.abstract","Laser microdissection is a valuable tool to prepare pure cell populations from complex tissues for further analyses. Gene expression studies by real-time RT-PCR and cDNA arrays of microdissected tissues are becoming widely used methods. The integrity and quantity of prepared RNA must be proven to ensure reliable results in subsequent applications such as quantitative RT-PCR and cDNA-arrays. In the present study we used RNAlater(TM) protected prostate tissue for laser microdissection of tumor and tumor-free tissues. RNA quality and quantity was assessed using automated capillary gel electrophoresis. By using quantitative real time-RT-PCR before and after mRNA amplification the insulin-like growth factor binding protein-3 (IGFBP-3) gene expression was shown to be down-regulated in three out of five cases and DD3 was up-regulated in cancer tissues in all cases. The up-regulation of DD3 and the down-regulation of IGFBP-3 gene expression in cancer tissue were conserved after RNA amplification. A cDNA microarray also revealed an IGFBP-3 down-regulation in cancer tissue as well as several genes known to be differerentially expressed in prostate cancer. Taken together, we present a novel method for the isolation of intact RNA from laser microdissection-derived prostate cancer tissue useful for downstream applications of real-time RT-PCR and cDNA microarrays."],["dc.identifier.isi","000220779700004"],["dc.identifier.pmid","15067329"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/48389"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Professor D A Spandidos"],["dc.relation.issn","1019-6439"],["dc.title","cDNA microarray analysis with amplified RNA after isolation of intact cellular RNA from neoplastic and non-neoplastic prostate tissue separated by laser microdissections"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details PMID PMC WOS2004Journal Article [["dc.bibliographiccitation.firstpage","50"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","The Journal of Pathology"],["dc.bibliographiccitation.lastpage","59"],["dc.bibliographiccitation.volume","202"],["dc.contributor.author","Grzmil, M."],["dc.contributor.author","Hemmerlein, Bernhard"],["dc.contributor.author","Thelen, Paul"],["dc.contributor.author","Schweyer, Stefan"],["dc.contributor.author","Burfeind, Peter"],["dc.date.accessioned","2018-11-07T10:52:50Z"],["dc.date.available","2018-11-07T10:52:50Z"],["dc.date.issued","2004"],["dc.description.abstract","The type I insulin-like growth factor receptor (IGF-IR) is involved in tumour cell proliferation, invasion, and cancer cell survival. Several studies indicate that the IGF axis contributes to prostate cancer pathogenesis, but there is no consensus regarding the relative expression of the IGF-IR in benign and malignant prostate epithelium. In this study, endogenous IGF-IR gene expression was reduced in stably transfected PC-3 cells by employing an antisense RNA strategy which resulted in significant suppression of both PC3 cell invasion and proliferation in vitro. Furthermore, it was demonstrated that a direct correlation exists between the inhibition of IGF-IR gene expression and either up-regulation of IGF binding protein (BP)-3 or down-regulation of matrix metalloproteinase (MMP)2 expression in androgen-independent PC-3 cells. Moreover, inhibition of IGF-IR gene expression in transfected PC-3 cells leads to an enhanced rate of spontaneous apoptosis. In addition, expression analyses by quantitative RT-PCR on RNA from laser microdissected matched normal prostate and prostate tumour samples revealed that IGF-IR gene expression was up-regulated in nine of 12 prostate cancers, whereas IGFBP-3 gene expression was downregulated in all 12 prostate carcinomas analysed. These results indicate an important role for IGF-IR and IGFBP-3 in the homeostasis of prostate carcinoma cells and provide a further basis for targeting IGF-IR or IGFBP-3 gene expression in order to improve understanding of the IGF-IR-activated signalling pathways and as a potential treatment for prostate cancer. Copyright (C) 2003 John Wiley Sons, Ltd."],["dc.identifier.doi","10.1002/path.1492"],["dc.identifier.isi","000187668700007"],["dc.identifier.pmid","14694521"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/49206"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","John Wiley & Sons Ltd"],["dc.relation.issn","0022-3417"],["dc.title","Blockade of the type IIGF receptor expression in human prostate cancer cells inhibits proliferation and invasion, up-regulates lGF binding protein-3, and suppresses MMP-2 expression"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2005Journal Article [["dc.bibliographiccitation.firstpage","1360"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Carcinogenesis"],["dc.bibliographiccitation.lastpage","1367"],["dc.bibliographiccitation.volume","26"],["dc.contributor.author","Thelen, Paul"],["dc.contributor.author","Scharf, Jens-Gerd"],["dc.contributor.author","Burfeind, Peter"],["dc.contributor.author","Hemmerlein, Bernhard"],["dc.contributor.author","Wuttke, Wolfgang"],["dc.contributor.author","Spengler, B."],["dc.contributor.author","Christoffel, V."],["dc.contributor.author","Ringert, Rolf-Hermann"],["dc.contributor.author","Seidlova-Wuttke, Dana"],["dc.date.accessioned","2018-11-07T10:56:59Z"],["dc.date.available","2018-11-07T10:56:59Z"],["dc.date.issued","2005"],["dc.description.abstract","Isoflavones have been shown to exert antiproliferative effects on cancer cells by steroid receptor signaling. In this study, we demonstrate the potential of plant constituents extracted from Belamcanda chinensis as anticancer drugs, which regulate the aberrant expression of genes relevant in proliferation, invasion, immortalization and apoptosis. LNCaP cells were treated with B.chinensis extract, tectorigenin or other isoflavones and mRNA expression was quantified by using real time RT-PCR. In addition, ELISA, TRAP assays and western blots were used to measure protein expression or activity. Male nude mice (n = 18) were injected subcutaneously with LNCaP cells and were fed with extracts from B.chinensis, and tumor development was monitored versus a control animal group (n = 18). Tectorigenin and several other phytochemicals downregulated PDEF, PSA and IGF-1 receptor mRNA expression in vitro. Furthermore, PSA secretion and IGF-1 receptor protein expression were diminished, and hTERT mRNA expression and telomerase activity decreased after tectorigenin treatments. However, TIMP-3 mRNA was upregulated on tectorigenin treatment. Growth of subcutaneous tumors in nude mice was delayed and diminished in animals fed with extracts from B.chinensis. The downregulation of PDEF, PSA, hTERT and IGF-1 receptor gene expression by tectorigenin demonstrates the antiproliferative potential of these agents. The upregulation of TIMP-3 gene expression indicates a pro-apoptotic function of the drug and a reduction of the invasiveness of tumors. The animal experiments demonstrate that B.chinensis markedly inhibited the development of tumors in vivo. Thus, these compounds may be useful for the prevention or treatment of human prostate cancer."],["dc.identifier.doi","10.1093/carcin/bgi092"],["dc.identifier.isi","000230724700006"],["dc.identifier.pmid","15845653"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/50140"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Oxford Univ Press"],["dc.relation.issn","0143-3334"],["dc.title","Tectorigenin and other phytochemicals extracted from leopard lily Belamcanda chinensis affect new and established targets for therapies in prostate cancer"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2012Journal Article [["dc.bibliographiccitation.artnumber","19"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","BMC Clinical Pathology"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Bremmer, Felix"],["dc.contributor.author","Hemmerlein, Bernhard"],["dc.contributor.author","Strauss, Arne"],["dc.contributor.author","Burfeind, Peter"],["dc.contributor.author","Thelen, Paul"],["dc.contributor.author","Radzun, Heinz-Joachim"],["dc.contributor.author","Behnes, Carl Ludwig"],["dc.date.accessioned","2019-07-09T11:54:07Z"],["dc.date.available","2019-07-09T11:54:07Z"],["dc.date.issued","2012"],["dc.description.abstract","Background Testicular germ cell tumours (TGCTs) are the most common malignancy in young men aged 18–35 years. They are clinically and histologically subdivided into seminomas and non-seminomas. Cadherins are calcium-dependent transmembrane proteins of the group of adhesion proteins. They play a role in the stabilization of cell-cell contacts, the embryonic morphogenesis, in the maintenance of cell polarity and signal transduction. N-cadherin (CDH2), the neuronal cadherin, stimulates cell-cell contacts during migration and invasion of cells and is able to suppress tumour cell growth. Methods Tumour tissues were acquired from 113 male patients and investigated by immunohistochemistry, as were the three TGCT cell lines NCCIT, NTERA-2 and Tcam2. A monoclonal antibody against N-cadherin was used. Results Tumour-free testis and intratubular germ cell neoplasias (unclassified) (IGCNU) strongly expressed N-cadherin within the cytoplasm. In all seminomas investigated, N-cadherin expression displayed a membrane-bound location. In addition, the teratomas and yolk sac tumours investigated also differentially expressed N-cadherin. In contrast, no N-cadherin could be detected in any of the embryonal carcinomas and chorionic carcinomas examined. This expression pattern was also seen in the investigated mixed tumours consisting of seminomas, teratomas, and embryonal carcinoma. Conclusions N-cadherin expression can be used to differentiate embryonal carcinomas and chorionic carcinomas from other histological subtypes of TGCT."],["dc.identifier.doi","10.1186/1472-6890-12-19"],["dc.identifier.fs","593171"],["dc.identifier.pmid","23066729"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/8499"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/60578"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.rights","CC BY 2.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/2.0"],["dc.title","N-cadherin expression in malignant germ cell tumours of the testis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2013Journal Article [["dc.bibliographiccitation.firstpage","1115"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Carcinogenesis"],["dc.bibliographiccitation.lastpage","1124"],["dc.bibliographiccitation.volume","34"],["dc.contributor.author","Witt, Daria"],["dc.contributor.author","Burfeind, Peter"],["dc.contributor.author","von Hardenberg, Sandra"],["dc.contributor.author","Opitz, Lennart"],["dc.contributor.author","Salinas-Riester, Gabriela"],["dc.contributor.author","Bremmer, Felix"],["dc.contributor.author","Schweyer, Stefan"],["dc.contributor.author","Thelen, Paul"],["dc.contributor.author","Neesen, Juergen"],["dc.contributor.author","Kaulfuss, Silke"],["dc.date.accessioned","2018-11-07T09:25:10Z"],["dc.date.available","2018-11-07T09:25:10Z"],["dc.date.issued","2013"],["dc.description.abstract","In this study, primary murine prostate cancer (PCa) cells were derived using the well-established TRAMP model. These PCa cells were treated with the histone deacetylase inhibitor, valproic acid (VPA), and we demonstrated that VPA treatment has an antimigrative, antiinvasive and antiproliferative effect on PCa cells. Using microarray analyses, we discovered several candidate genes that could contribute to the cellular effects we observed. In this study, we could demonstrate that VPA treatment of PCa cells causes the re-expression of cyclin D2, a known regulator that is frequently lost in PCa as we could show using immunohistochemical analyses on PCa specimens. We demonstrate that VPA specifically induces the re-expression of cyclin D2, one of the highly conserved D-type cyclin family members, in several cancer cell lines with weak or no cyclin D2 expression. Interestingly, VPA treatment had no effect in fibroblasts, which typically have high basal levels of cyclin D2 expression. The re-expression of cyclin D2 observed in PCa cells is activated by increased histone acetylation in the promoter region of the Ccnd2 gene and represents one underlying molecular mechanism of VPA treatment that inhibits the proliferation of cancer cells. Altogether, our results confirm that VPA is an anticancer therapeutic drug for the treatment of tumors with epigenetically repressed cyclin D2 expression."],["dc.identifier.doi","10.1093/carcin/bgt019"],["dc.identifier.isi","000318646000021"],["dc.identifier.pmid","23349020"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/30001"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Oxford Univ Press"],["dc.relation.issn","0143-3334"],["dc.title","Valproic acid inhibits the proliferation of cancer cells by re-expressing cyclin D2"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2018Journal Article [["dc.bibliographiccitation.firstpage","16951"],["dc.bibliographiccitation.issue","24"],["dc.bibliographiccitation.journal","Oncotarget"],["dc.bibliographiccitation.lastpage","16961"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Bremmer, Felix"],["dc.contributor.author","Jarry, Hubertus"],["dc.contributor.author","Unterkircher, Valerie"],["dc.contributor.author","Kaulfuss, Silke"],["dc.contributor.author","Burfeind, Peter"],["dc.contributor.author","Radzun, Heinz-Joachim"],["dc.contributor.author","Ströbel, Philipp"],["dc.contributor.author","Thelen, Paul"],["dc.date.accessioned","2019-07-09T11:45:18Z"],["dc.date.available","2019-07-09T11:45:18Z"],["dc.date.issued","2018"],["dc.description.abstract","Novel treatments for castration-resistant prostate cancer (CRPC) such as abiraterone acetate (AA) or enzalutamide effectively target the androgen pathway to arrest aberrant signalling and cell proliferation. Testosterone is able to inhibit tumour cell growth in CRPC. Estrogen receptor-beta (ERβ) binds the testosteronemetabolites 3β-androstanediol and 3α-androstanediol in parallel to the canonical estradiol. In the prostate it is widely accepted that ERβ regulates estrogen signalling, mediating anti-proliferative effects. We used the prostate cancer cell lines LNCaP, PC-3, VCaP, and the non-neoplastic BPH-1. VCaP cells were treated with 1 nmol/L testosterone over 20 passages, yielding the cell line VCaPrev, sensitive to hormone therapies. In contrast, LNCaP cells were grown for more than 100 passages yielding a high passage therapy resistant cell line (hiPLNCaP). VCaP and hiPLNCaP cell lines were treated with 5 μmol/L AA for more than 20 passages, respectively, generating the AAtolerant- subtypes VCaPAA and hiPLNCaPAA. Cell lines were treated with testosterone, dihydrotestosterone (DHT), R1881, and the androgen-metabolites 3β-androstanediol and 3α-androstanediol. 3β-androstanediol or 3α-androstanediol significantly reduced proliferation in all cell lines except the BPH-1 and androgen receptor-negative PC-3 and markedly downregulated AR and estrogen receptor alpha (ERα). Whereas ERβ expression was increased in all cell lines except BPH-1 or PC-3. In summary, 3β-adiol or 3α-adiol, as well as DHT and R1881, significantly reduced tumour cell growth in CRPC cells. Thus, these compounds represent novel potential therapeutic approaches to overcome drug-resistance in CRPC, especially with regard to AR-V7 function in therapy resistance. Furthermore, these data confirm the tumour suppressor properties of ERβ in CRPC."],["dc.identifier.doi","10.18632/oncotarget.24763"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15104"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59207"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","1949-2553"],["dc.rights","CC BY 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/3.0"],["dc.subject.ddc","610"],["dc.title","Testosterone metabolites inhibit proliferation of castration- and therapy-resistant prostate cancer"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2004Journal Article [["dc.bibliographiccitation.firstpage","97"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","International Journal of Oncology"],["dc.bibliographiccitation.lastpage","105"],["dc.bibliographiccitation.volume","24"],["dc.contributor.author","Grzmil, M."],["dc.contributor.author","Voigt, S."],["dc.contributor.author","Thelen, Paul"],["dc.contributor.author","Hemmerlein, Bernhard"],["dc.contributor.author","Helmke, K."],["dc.contributor.author","Burfeind, Peter"],["dc.date.accessioned","2018-11-07T10:52:41Z"],["dc.date.available","2018-11-07T10:52:41Z"],["dc.date.issued","2004"],["dc.description.abstract","In order to analyze differential gene expression of putative prostate tumor markers we compared the expression levels of >400 cancer-related genes using the cDNA array technique in a set of prostate tumors and matched normal prostate tissues. Up-regulated expression of mammary tumor 8 kDa protein (MAT-8), complement component C1S (C1S), ferritin heavy chain (FTH1), peptidyl-prolyl cis-trans isomerase A (PPIA), RNA-binding protein regulatory subunit DJ-1 protein (DJ-1) and vacuolar ATP synthase subunit F (ATP6V1F) was determined in prostate carcinoma and confirmed by using quantitative real-time RT-PCR analyses. Furthermore, quantitative real time RT-PCR on intact RNAs from 11 paired laser microdissected epithelial tissue samples confirmed up-regulated MAT-8 expression in 6 out of 11 prostate tumors. To determine the function of MAT-8 in vitro, human PC-3 and LNCaP prostate carcinoma cells were transfected with small interfering double-stranded RNA (siRNA) oligonucleotides against the MAT-8 gene leading to a specific down-regulation of MAT-8 expression. In addition, suppression of MAT-8 expression caused a significant decrease in cellular proliferation of both prostate cancer cell lines, whereas invasive capacity and cellular apoptosis remained unaffected. Taken together, our results indicate that the human MAT-8 gene contains the potential to serve as a prostate cancer expression marker and that MAT-8 plays an important role in cellular growth of prostate carcinomas."],["dc.identifier.isi","000187359500012"],["dc.identifier.pmid","14654946"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/49171"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Professor D A Spandidos"],["dc.relation.issn","1019-6439"],["dc.title","Up-regulated expression of the MAT-8 gene in prostate cancer and its siRNA-mediated inhibition of expression induces a decrease in proliferation of human prostate carcinoma cells"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details PMID PMC WOS