Options
Brose, Nils
Loading...
Preferred name
Brose, Nils
Official Name
Brose, Nils
Alternative Name
Brose, N.
Main Affiliation
Now showing 1 - 3 of 3
2010Journal Article [["dc.bibliographiccitation.firstpage","879"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Archives of General Psychiatry"],["dc.bibliographiccitation.lastpage","888"],["dc.bibliographiccitation.volume","67"],["dc.contributor.author","Begemann, Martin"],["dc.contributor.author","Grube, Sabrina"],["dc.contributor.author","Papiol, Sergi"],["dc.contributor.author","Malzahn, Dörte"],["dc.contributor.author","Krampe, Henning"],["dc.contributor.author","Ribbe, Katja"],["dc.contributor.author","Friedrichs, Heidi"],["dc.contributor.author","Radyushkin, Konstantin"],["dc.contributor.author","El-Kordi, Ahmed"],["dc.contributor.author","Benseler, Fritz"],["dc.contributor.author","Hannke, Kathrin"],["dc.contributor.author","Sperling, Swetlana"],["dc.contributor.author","Schwerdtfeger, Dayana"],["dc.contributor.author","Thanhäuser, Ivonne"],["dc.contributor.author","Gerchen, Martin Fungisai"],["dc.contributor.author","Ghorbani, Mohammed"],["dc.contributor.author","Gutwinski, Stefan"],["dc.contributor.author","Hilmes, Constanze"],["dc.contributor.author","Leppert, Richard"],["dc.contributor.author","Ronnenberg, Anja"],["dc.contributor.author","Sowislo, Julia"],["dc.contributor.author","Stawicki, Sabina"],["dc.contributor.author","Stödtke, Maren"],["dc.contributor.author","Szuszies, Christoph"],["dc.contributor.author","Reim, Kerstin"],["dc.contributor.author","Riggert, Joachim"],["dc.contributor.author","Eckstein, Fritz"],["dc.contributor.author","Falkai, Peter"],["dc.contributor.author","Bickeböller, Heike"],["dc.contributor.author","Nave, Klaus-Armin"],["dc.contributor.author","Brose, Nils"],["dc.contributor.author","Ehrenreich, Hannelore"],["dc.date.accessioned","2017-09-07T11:46:57Z"],["dc.date.available","2017-09-07T11:46:57Z"],["dc.date.issued","2010"],["dc.description.abstract","Context: Schizophrenia is the collective term for a heterogeneous group of mental disorders with a still obscure biological basis. In particular, the specific contribution of risk or candidate gene variants to the complex schizophrenic phenotype is largely unknown. Objective: To prepare the ground for a novel “phenomics” approach, a unique schizophrenia patient database was established by GRAS (Göttingen Research Association for Schizophrenia), designed to allow association of genetic information with quantifiable phenotypes. Because synaptic dysfunction plays a key role in schizophrenia, the complexin 2 gene (CPLX2) was examined in the first phenotype-based genetic association study (PGAS) of GRAS. Design: Subsequent to a classic case-control approach, we analyzed the contribution of CPLX2 polymorphisms to discrete cognitive domains within the schizophrenic population. To gain mechanistic insight into how certain CPLX2 variants influence gene expression and function, peripheral blood mononuclear cells of patients, Cplxnull mutantmice, and transfected cells were investigated.Setting: Coordinating research center (Max Planck Institute of Experimental Medicine) and 23 collaboratingpsychiatric centers all over Germany.Participants: One thousand seventy-one patients with schizophrenia (DSM-IV) examined by an invariant investigator team, resulting in the GRAS database with more than 3000 phenotypic data points per patient, and 1079 healthy control subjects of comparable ethnicity.Main Outcome Measure: Cognitive performance including executive functioning, reasoning, and verbal learning/memory. Results: Six single-nucleotide polymorphisms, distributed over the whole CPLX2 gene, were found to be highly associated with current cognition of schizophrenic subjects but only marginally with premorbid intelligence. Correspondingly, in Cplx2-null mutant mice, prominent cognitive loss of function was obtained only in combination with a minor brain lesion applied during puberty, modeling a clinically relevant environmental risk (“second hit”) for schizophrenia. In the human CPLX2 gene, 1 of the identified 6 cognition-relevant single-nucleotide polymorphisms, rs3822674 in the 3´ untranslated region, was detected to influence microRNA-498 binding and gene expression. The same marker was associated with differential expression of CPLX2 in peripheral blood mononuclear cells. Conclusions: The PGAS allows identification of markerassociated clinical/biological traits. Current cognitive performance in schizophrenic patients is modified by CPLX2 variants modulating posttranscriptional gene expression"],["dc.identifier.doi","10.1001/archgenpsychiatry.2010.107"],["dc.identifier.fs","577608"],["dc.identifier.gro","3150567"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/6097"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/7343"],["dc.language.iso","en"],["dc.notes.intern","Migrated from goescholar"],["dc.notes.status","final"],["dc.rights.access","closedAccess"],["dc.subject","Schizophrenia"],["dc.subject.ddc","610"],["dc.title","Modification of cognitive performance in schizophrenia by complexin 2 gene polymorphisms"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2019Journal Article [["dc.bibliographiccitation.artnumber","2530.e5"],["dc.bibliographiccitation.firstpage","2521"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Cell Reports"],["dc.bibliographiccitation.volume","26"],["dc.contributor.author","López-Murcia, Francisco José"],["dc.contributor.author","Reim, Kerstin"],["dc.contributor.author","Jahn, Olaf"],["dc.contributor.author","Taschenberger, Holger"],["dc.contributor.author","Brose, Nils"],["dc.date.accessioned","2019-07-09T11:50:32Z"],["dc.date.available","2019-07-09T11:50:32Z"],["dc.date.issued","2019"],["dc.description.abstract","SNARE-mediated synaptic vesicle (SV) fusion is controlled by multiple regulatory proteins that determine neurotransmitter release efficiency. Complexins are essential SNARE regulators whose mode of action is unclear, as available evidence indicates positive SV fusion facilitation and negative \"fusion clamp\"-like activities, with the latter occurring only in certain contexts. Because these contradictory findings likely originate in part from different experimental perturbation strategies, we attempted to resolve them by examining a conditional complexin-knockout mouse line as the most stringent genetic perturbation model available. We found that acute complexin loss after synaptogenesis in autaptic and mass-cultured hippocampal neurons reduces SV fusion probability and thus abates the rates of spontaneous, synchronous, asynchronous, and delayed transmitter release but does not affect SV priming or cause \"unclamping\" of spontaneous SV fusion. Thus, complexins act as facilitators of SV fusion but are dispensable for \"fusion clamping\" in mammalian forebrain neurons."],["dc.identifier.doi","10.1016/j.celrep.2019.02.030"],["dc.identifier.pmid","30840877"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15955"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59788"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","info:eu-repo/grantAgreement/EC/H2020/670283/EU//SYNPRIME"],["dc.relation.issn","2211-1247"],["dc.rights","CC BY-NC-ND 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-nd/4.0"],["dc.subject.ddc","573"],["dc.subject.ddc","612"],["dc.title","Acute Complexin Knockout Abates Spontaneous and Evoked Transmitter Release"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2016Journal Article Research Paper [["dc.bibliographiccitation.firstpage","2239"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Cell Reports"],["dc.bibliographiccitation.lastpage","2250"],["dc.bibliographiccitation.volume","15"],["dc.contributor.author","Mortensen, Lena S."],["dc.contributor.author","Park, Silvia J.H."],["dc.contributor.author","Ke, Jiang-bin"],["dc.contributor.author","Cooper, Benjamin H."],["dc.contributor.author","Zhang, Lei"],["dc.contributor.author","Imig, Cordelia"],["dc.contributor.author","Löwel, Siegrid"],["dc.contributor.author","Reim, Kerstin"],["dc.contributor.author","Brose, Nils"],["dc.contributor.author","Demb, Jonathan B."],["dc.contributor.author","Rhee, Jeong-Seop"],["dc.contributor.author","Singer, Joshua H."],["dc.date.accessioned","2017-09-07T11:44:51Z"],["dc.date.available","2017-09-07T11:44:51Z"],["dc.date.issued","2016"],["dc.description.abstract","Complexin (Cplx) proteins modulate the core SNARE complex to regulate exocytosis. To understand the contributions of Cplx to signaling in a well-characterized neural circuit, we investigated how Cplx3, a retina-specific paralog, shapes transmission at rod bipolar (RB)-> AII amacrine cell synapses in the mouse retina. Knockout of Cplx3 strongly attenuated fast, phasic Ca2+-dependent transmission, dependent on local [Ca2+] nanodomains, but enhanced slower Ca2+-dependent transmission, dependent on global intraterminal [Ca2+] ([Ca2+](I)). Surprisingly, coordinated multivesicular release persisted at Cplx3(-/-) synapses, although its onset was slowed. Light-dependent signaling at Cplx3(-/-) RB -> AII synapses was sluggish, owing largely to increased asynchronous release at light offset. Consequently, propagation of RB output to retinal ganglion cells was suppressed dramatically. Our study links Cplx3 expression with synapse and circuit function in a specific retinal pathway and reveals a role for asynchronous release in circuit gain control."],["dc.identifier.doi","10.1016/j.celrep.2016.05.012"],["dc.identifier.gro","3141669"],["dc.identifier.isi","000377776300014"],["dc.identifier.pmid","27239031"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/13471"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/7452"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","2211-1247"],["dc.rights","CC BY-NC-ND 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-nd/4.0"],["dc.title","Complexin 3 Increases the Fidelity of Signaling in a Retinal Circuit by Regulating Exocytosis at Ribbon Synapses"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS