Now showing 1 - 4 of 4
  • 2012Journal Article
    [["dc.bibliographiccitation.artnumber","e47192"],["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","PloS one"],["dc.bibliographiccitation.lastpage","7"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Kessler, Michael"],["dc.contributor.author","Hertel, Dietrich"],["dc.contributor.author","Jungkunst, Hermann F."],["dc.contributor.author","Kluge, Jürgen"],["dc.contributor.author","Abrahamczyk, Stefan"],["dc.contributor.author","Bos, Merijn Marinus"],["dc.contributor.author","Buchori, Damayanti"],["dc.contributor.author","Gerold, Gerhard"],["dc.contributor.author","Gradstein, S. Robbert"],["dc.contributor.author","Köhler, Stefan"],["dc.contributor.author","Leuschner, Christoph"],["dc.contributor.author","Moser, Gerald"],["dc.contributor.author","Pitopang, Ramadhanil"],["dc.contributor.author","Saleh, Shahabuddin"],["dc.contributor.author","Schulze, Christian Hansjoachim"],["dc.contributor.author","Sporn, Simone Goda"],["dc.contributor.author","Steffan-Dewenter, Ingolf"],["dc.contributor.author","Tjitrosoedirdjo, Sri Sudarmiyati"],["dc.contributor.author","Tscharntke, Teja"],["dc.contributor.editor","Bond-Lamberty, Ben"],["dc.date.accessioned","2018-07-05T16:08:40Z"],["dc.date.available","2018-07-05T16:08:40Z"],["dc.date.issued","2012"],["dc.description.abstract","Managing ecosystems for carbon storage may also benefit biodiversity conservation, but such a potential ‘win-win’ scenario has not yet been assessed for tropical agroforestry landscapes. We measured above- and below-ground carbon stocks as well as the species richness of four groups of plants and eight of animals on 14 representative plots in Sulawesi, Indonesia, ranging from natural rainforest to cacao agroforests that have replaced former natural forest. The conversion of natural forests with carbon stocks of 227–362 Mg C ha−1 to agroforests with 82–211 Mg C ha−1 showed no relationships to overall biodiversity but led to a significant loss of forest-related species richness. We conclude that the conservation of the forest-related biodiversity, and to a lesser degree of carbon stocks, mainly depends on the preservation of natural forest habitats. In the three most carbon-rich agroforestry systems, carbon stocks were about 60% of those of natural forest, suggesting that 1.6 ha of optimally managed agroforest can contribute to the conservation of carbon stocks as much as 1 ha of natural forest. However, agroforestry systems had comparatively low biodiversity, and we found no evidence for a tight link between carbon storage and biodiversity. Yet, potential win-win agroforestry management solutions include combining high shade-tree quality which favours biodiversity with cacao-yield adapted shade levels."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2012"],["dc.identifier.doi","10.1371/journal.pone.0047192"],["dc.identifier.gro","3150069"],["dc.identifier.pmid","23077569"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/8161"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/15169"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation.issn","1932-6203"],["dc.rights","CC BY 2.5"],["dc.rights.uri","https://creativecommons.org/licenses/by/2.5"],["dc.title","Can Joint Carbon and Biodiversity Management in Tropical Agroforestry Landscapes Be Optimized?"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.journal","Frontiers in Forests and Global Change"],["dc.bibliographiccitation.volume","3"],["dc.contributor.affiliation","Kotowska, Martyna M.; 1Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Göttingen, Germany"],["dc.contributor.affiliation","Link, Roman M.; 1Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Göttingen, Germany"],["dc.contributor.affiliation","Röll, Alexander; 3Tropical Silviculture and Forest Ecology, University of Goettingen, Göttingen, Germany"],["dc.contributor.affiliation","Hertel, Dietrich; 1Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Göttingen, Germany"],["dc.contributor.affiliation","Hölscher, Dirk; 3Tropical Silviculture and Forest Ecology, University of Goettingen, Göttingen, Germany"],["dc.contributor.affiliation","Waite, Pierre-André; 1Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Göttingen, Germany"],["dc.contributor.affiliation","Moser, Gerald; 4Plant Ecology, Justus Liebig University of Giessen, Giessen, Germany"],["dc.contributor.affiliation","Tjoa, Aiyen; 5Department of Agrotechnology, Faculty of Agricultural Sciences, Tadulako University, Palu, Indonesia"],["dc.contributor.affiliation","Leuschner, Christoph; 1Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Göttingen, Germany"],["dc.contributor.affiliation","Schuldt, Bernhard; 1Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Göttingen, Germany"],["dc.contributor.author","Kotowska, Martyna M."],["dc.contributor.author","Link, Roman M."],["dc.contributor.author","Röll, Alexander"],["dc.contributor.author","Hertel, Dietrich"],["dc.contributor.author","Hölscher, Dirk"],["dc.contributor.author","Waite, Pierre-André"],["dc.contributor.author","Moser, Gerald"],["dc.contributor.author","Tjoa, Aiyen"],["dc.contributor.author","Leuschner, Christoph"],["dc.contributor.author","Schuldt, Bernhard"],["dc.date.accessioned","2021-05-17T16:13:19Z"],["dc.date.accessioned","2021-10-27T13:11:43Z"],["dc.date.available","2021-05-17T16:13:19Z"],["dc.date.available","2021-10-27T13:11:43Z"],["dc.date.issued","2021"],["dc.date.updated","2022-09-06T14:25:58Z"],["dc.description.abstract","The efficiency of the water transport system in trees sets physical limits to their productivity and water use. Although the coordination of carbon assimilation and hydraulic functions has long been documented, the mutual inter-relationships between wood anatomy, water use and productivity have not yet been jointly addressed in comprehensive field studies. Based on observational data from 99 Indonesian rainforest tree species from 37 families across 22 plots, we analyzed how wood anatomy and sap flux density relate to tree size and wood density, and tested their combined influence on aboveground biomass increment (ABI) and daily water use (DWU). Results from pairwise correlations were compared to the outcome of a structural equation model (SEM). Across species, we found a strong positive correlation between ABI and DWU. Wood hydraulic anatomy was more closely related to these indicators of plant performance than wood density. According to the SEM, the common effect of average tree size and sap flux density on the average stem increment and water use of a species was sufficient to fully explain the observed correlation between these variables. Notably, after controlling for average size, only a relatively small indirect effect of wood properties on stem increment and water use remained that was mediated by sap flux density, which was significantly higher for species with lighter and hydraulically more efficient wood. We conclude that wood hydraulic traits are mechanistically linked to water use and productivity via their influence on sap flow, but large parts of these commonly observed positive relationships can be attributed to confounding size effects."],["dc.description.sponsorship","Open-Access-Publikation 2020"],["dc.identifier.doi","10.3389/ffgc.2020.598759"],["dc.identifier.doi","10.3389/ffgc.2020.598759.s001"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/17787"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/91618"],["dc.language.iso","en"],["dc.notes.intern","Migrated from goescholar"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | A | A02: Wassernutzungseigenschaften von Bäumen und Palmen in Regenwald-Transformationssystemen Zusammenfassung"],["dc.relation","SFB 990 | B | B04: Pflanzenproduktivität und Ressourcenaufteilung im Wurzelraum entlang von Gradienten tropischer Landnutzungsintensität und Baumartenvielfalt"],["dc.relation.eissn","2624-893X"],["dc.relation.orgunit","Fakultät für Biologie und Psychologie"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject.ddc","570"],["dc.subject.gro","sfb990_journalarticles"],["dc.title","Effects of wood hydraulic properties on water use and productivity of tropical rainforest trees"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2011Journal Article
    [["dc.bibliographiccitation.firstpage","2179"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","BIOGEOSCIENCES"],["dc.bibliographiccitation.lastpage","2194"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Schuldt, Bernhard"],["dc.contributor.author","Leuschner, C."],["dc.contributor.author","Horna, Viviana"],["dc.contributor.author","Moser, Gerald"],["dc.contributor.author","Koehler, M."],["dc.contributor.author","van Straaten, Oliver"],["dc.contributor.author","Barus, Henry"],["dc.date.accessioned","2018-11-07T09:00:20Z"],["dc.date.available","2018-11-07T09:00:20Z"],["dc.date.issued","2011"],["dc.description.abstract","A large-scale replicated throughfall exclusion experiment was conducted in a pre-montane perhumid rainforest in Sulawesi (Indonesia) exposing the trees for two years to pronounced soil desiccation. The lack of regularly occurring dry periods and shallow rooting patterns distinguish this experiment from similar experiments conducted in the Amazonian rainforest. We tested the hypotheses that a tree's sun canopy is more affected by soil drought than its shade crown, making tall trees particularly vulnerable even under a perhumid climate, and that extended drought periods stimulate an acclimation in the hydraulic system of the sun canopy. In the abundant and tall tree species Castanopsis acuminatissima (Fagaceae), we compared 31 morphological, anatomical, hydraulic and chemical variables of leaves, branches and the stem together with stem diameter growth between drought and control plots. There was no evidence of canopy dieback. However, the drought treatment led to a 30% reduction in sapwood-specific hydraulic conductivity of sun canopy branches, possibly caused by the formation of smaller vessels and/or vessel filling by tyloses. Drought caused an increase in leaf size, but a decrease in leaf number, and a reduction in foliar calcium content. The delta C-13 and delta O-18 signatures of sun canopy leaves gave no indication of a permanent down-regulation of stomatal conductance during the drought, indicating that presenescent leaf shedding may have improved the water status of the remaining leaves. Annual stem diameter growth decreased during the drought, while the density of wood in the recently produced xylem increased in both the stem and sun canopy branches (marginally significant). The sun canopy showed a more pronounced drought response than the shade crown indicating that tall trees with a large sun canopy are more vulnerable to drought stress. We conclude that the extended drought prompted a number of medium-to long-term responses in the leaves, branches and the trunk, which may have reduced drought susceptibility. However, unlike a natural drought, our drought simulation experiment was carried out under conditions of high humidity, which may have dampened drought induced damages."],["dc.description.sponsorship","German Science Foundation [SFB 552]"],["dc.identifier.doi","10.5194/bg-8-2179-2011"],["dc.identifier.isi","000294457100012"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/8422"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/24130"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Copernicus Gesellschaft Mbh"],["dc.relation.issn","1726-4170"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Change in hydraulic properties and leaf traits in a tall rainforest tree species subjected to long-term throughfall exclusion in the perhumid tropics"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2010Journal Article
    [["dc.bibliographiccitation.firstpage","171"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Agroforestry Systems"],["dc.bibliographiccitation.lastpage","187"],["dc.bibliographiccitation.volume","79"],["dc.contributor.author","Moser, G."],["dc.contributor.author","Leuschner, C."],["dc.contributor.author","Hertel, D."],["dc.contributor.author","Hölscher, D."],["dc.contributor.author","Köhler, M."],["dc.contributor.author","Leitner, D."],["dc.contributor.author","Michalzik, B."],["dc.contributor.author","Prihastanti, E."],["dc.contributor.author","Tjitrosemito, S."],["dc.contributor.author","Schwendenmann, L."],["dc.date.accessioned","2017-09-07T11:45:34Z"],["dc.date.available","2017-09-07T11:45:34Z"],["dc.date.issued","2010"],["dc.description.abstract","In South-east Asia, ENSO-related droughts represent irregularly occurring hazards for agroforestry systems containing cocoa which are predicted to increase in severity with expected climate warming. To characterize the drought response of mature cocoa trees, we conducted the Sulawesi Throughfall Displacement Experiment in a shaded (Gliricidia sepium) cocoa agroforestry system in Central Sulawesi, Indonesia. Three large sub-canopy roofs were installed to reduce throughfall by about 80% over a 13-month period to test the hypotheses that (i) cocoa trees are sensitive to drought due to their shallow fine root system, and (ii) bean yield is more sensitive to drought than leaf or stem growth. As 83% of fine root (diameter <2 mm) and 86% of coarse root biomass (>2 mm) was located in the upper 40 cm of the soil, the cocoa trees examined had a very shallow root system. Cocoa and Gliricidia differed in their vertical rooting patterns, thereby reducing competition for water. Despite being exposed for several months to soil water contents close to the conventional wilting point, cocoa trees showed no significant decreases in leaf biomass, stem and branch wood production or fine root biomass. Possible causes are active osmotic adjustment in roots, mitigation of drought stress by shading from Gliricidia or other factors. By contrast, production of cocoa beans was significantly reduced in the roof plots, supporting reports of substantial reductions in bean yields during ENSO-related drought events in the region. We conclude that cocoa possesses traits related to drought tolerance which enable it to maintain biomass production during extended dry periods, whereas bean yield appears to be particularly drought sensitive."],["dc.identifier.doi","10.1007/s10457-010-9303-1"],["dc.identifier.gro","3149046"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/4251"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/5690"],["dc.language.iso","en"],["dc.notes.intern","Hoelscher Crossref import"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.relation.issn","0167-4366"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Response of cocoa trees (Theobroma cacao) to a 13-month desiccation period in Sulawesi, Indonesia"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI