Now showing 1 - 10 of 19
  • 2016Conference Abstract
    [["dc.bibliographiccitation.firstpage","126a"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Biophysical Journal"],["dc.bibliographiccitation.volume","110"],["dc.contributor.author","Schön, Markus"],["dc.contributor.author","Kramer, Corinna"],["dc.contributor.author","Noeding, Helen"],["dc.contributor.author","Mey, Ingo"],["dc.contributor.author","Janshoff, Andreas"],["dc.contributor.author","Steinem, Claudia"],["dc.date.accessioned","2020-12-10T14:22:43Z"],["dc.date.available","2020-12-10T14:22:43Z"],["dc.date.issued","2016"],["dc.format.extent","126A"],["dc.identifier.doi","10.1016/j.bpj.2015.11.727"],["dc.identifier.isi","000375093800128"],["dc.identifier.issn","0006-3495"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/71703"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Cell Press"],["dc.publisher.place","Cambridge"],["dc.relation.eventlocation","Los Angeles, CA"],["dc.relation.issn","1542-0086"],["dc.relation.issn","0006-3495"],["dc.title","Self-Organization of Actomyosin Networks Attached to Artificial Membranes"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2014-05-01Journal Article
    [["dc.bibliographiccitation.artnumber","140046"],["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Open Biology"],["dc.bibliographiccitation.lastpage","7"],["dc.bibliographiccitation.volume","4"],["dc.contributor.author","Rother, Jan"],["dc.contributor.author","Nöding, Helen"],["dc.contributor.author","Mey, Ingo"],["dc.contributor.author","Janshoff, Andreas"],["dc.date.accessioned","2019-07-09T11:41:15Z"],["dc.date.available","2019-07-09T11:41:15Z"],["dc.date.issued","2014-05-01"],["dc.description.abstract","Mechanical phenotyping of cells by atomic force microscopy (AFM) was proposed as a novel tool in cancer cell research as cancer cells undergo massive structural changes, comprising remodelling of the cytoskeleton and changes of their adhesive properties. In this work, we focused on the mechanical properties of human breast cell lines with different metastatic potential by AFM-based microrheology experiments. Using this technique, we are not only able to quantify the mechanical properties of living cells in the context of malignancy, but we also obtain a descriptor, namely the loss tangent, which provides model-independent information about the metastatic potential of the cell line. Including also other cell lines from different organs shows that the loss tangent (G″/G') increases generally with the metastatic potential from MCF-10A representing benign cells to highly malignant MDA-MB-231 cells."],["dc.identifier.doi","10.1098/rsob.140046"],["dc.identifier.fs","609535"],["dc.identifier.pmid","24850913"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/11878"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/58382"],["dc.language.iso","en"],["dc.relation.issn","2046-2441"],["dc.rights.access","openAccess"],["dc.subject.mesh","Animals"],["dc.subject.mesh","Breast Neoplasms"],["dc.subject.mesh","Cell Line"],["dc.subject.mesh","Dogs"],["dc.subject.mesh","Elasticity"],["dc.subject.mesh","Female"],["dc.subject.mesh","Humans"],["dc.subject.mesh","MCF-7 Cells"],["dc.subject.mesh","Mice"],["dc.subject.mesh","Microscopy, Atomic Force"],["dc.subject.mesh","Models, Biological"],["dc.subject.mesh","NIH 3T3 Cells"],["dc.subject.mesh","Neoplasm Metastasis"],["dc.title","Atomic force microscopy-based microrheology reveals significant differences in the viscoelastic response between malign and benign cell lines."],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2020Journal Article
    [["dc.bibliographiccitation.firstpage","6329"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Nano Letters"],["dc.bibliographiccitation.lastpage","6335"],["dc.bibliographiccitation.volume","20"],["dc.contributor.author","Hubrich, Hanna"],["dc.contributor.author","Mey, Ingo P."],["dc.contributor.author","Brückner, Bastian R."],["dc.contributor.author","Mühlenbrock, Peter"],["dc.contributor.author","Nehls, Stefan"],["dc.contributor.author","Grabenhorst, Lennart"],["dc.contributor.author","Oswald, Tabea"],["dc.contributor.author","Steinem, Claudia"],["dc.contributor.author","Janshoff, Andreas"],["dc.date.accessioned","2020-11-05T15:08:07Z"],["dc.date.available","2020-11-05T15:08:07Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1021/acs.nanolett.0c01769"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/68468"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-352.7"],["dc.relation.eissn","1530-6992"],["dc.relation.issn","1530-6984"],["dc.title","Viscoelasticity of Native and Artificial Actin Cortices Assessed by Nanoindentation Experiments"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2014Book Chapter
    [["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.lastpage","60"],["dc.bibliographiccitation.seriesnr","260"],["dc.contributor.author","Berger, R."],["dc.contributor.author","Binder, K."],["dc.contributor.author","Diezemann, G."],["dc.contributor.author","Gauss, J."],["dc.contributor.author","Helm, M."],["dc.contributor.author","Hsu, H.-P."],["dc.contributor.author","Janshoff, Andreas"],["dc.contributor.author","Metzroth, T."],["dc.contributor.author","Mey, I."],["dc.contributor.author","Milchev, A."],["dc.contributor.author","Paul, W."],["dc.contributor.author","Rostiashvili, V. G."],["dc.contributor.author","Vilgis, T. A."],["dc.contributor.editor","Basché, Thomas"],["dc.contributor.editor","Müllen, Klaus"],["dc.contributor.editor","Schmidt, Manfred"],["dc.date.accessioned","2022-03-01T11:47:00Z"],["dc.date.available","2022-03-01T11:47:00Z"],["dc.date.issued","2014"],["dc.identifier.doi","10.1007/12_2013_266"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/103881"],["dc.notes.intern","DOI-Import GROB-531"],["dc.publisher","Springer International Publishing"],["dc.publisher.place","Cham"],["dc.relation.crisseries","Advances in Polymer Science"],["dc.relation.eisbn","978-3-319-05828-3"],["dc.relation.isbn","978-3-319-05827-6"],["dc.relation.ispartof","From Single Molecules to Nanoscopically Structured Materials"],["dc.title","Mechanical Properties of Single Molecules and Polymer Aggregates"],["dc.type","book_chapter"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2011Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","5624"],["dc.bibliographiccitation.issue","14"],["dc.bibliographiccitation.journal","Analytical Chemistry"],["dc.bibliographiccitation.lastpage","5630"],["dc.bibliographiccitation.volume","83"],["dc.contributor.author","Lazzara, Thomas D."],["dc.contributor.author","Mey, Ingo"],["dc.contributor.author","Steinem, Claudia"],["dc.contributor.author","Janshoff, Andreas"],["dc.date.accessioned","2017-09-07T11:44:07Z"],["dc.date.available","2017-09-07T11:44:07Z"],["dc.date.issued","2011"],["dc.description.abstract","Porous substrates have gained widespread interest for biosensor applications based on molecular recognition. Thus, there is a great demand to systematically investigate the parameters that limit the transport of molecules toward and within the porous matrix as a function of pore geometry. Finite element simulations (FES) and time-resolved optical waveguide spectroscopy (OWS) experiments were used to systematically study the transport of molecules and their binding on ism the inner surface of a porous material. OWS allowed us to measure the kinetics of protein adsorption within porous anodic aluminum oxide membranes composed of parallel-aligned, cylindrical pores with pore radii of 10-40 nm and pore depths of 0.8-9.6 mu m. FES showed that protein adsorption on the inner surface of a porous matrix is almost exclusively governed by the flux into the pores. The pore-interior surface nearly acts as a perfect sink for the macromolecules. Neither diffusion within the pores nor adsorption on the surface are rate limiting steps, except for very low rate constants of adsorption. While adsorption on the pore walls is mainly governed by the stationary flux into the pores, desorption from the inner pore walls involves the rate constants of desorption and adsorption, essentially representing the protein surface interaction potential. FES captured the essential features of the OWS experiments such as the initial linear slopes of the adsorption kinetics, which are inversely proportional to the pore depth and linearly proportional to protein concentration. We show that protein adsorption kinetics allows for an accurate determination of protein concentration, while desorption kinetics could be used to capture the interaction potential of the macromolecules with the pore walls."],["dc.identifier.doi","10.1021/ac200725y"],["dc.identifier.gro","3142695"],["dc.identifier.isi","000292892000021"],["dc.identifier.pmid","21651041"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/9415"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/128"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0003-2700"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Benefits and Limitations of Porous Substrates as Biosensors for Protein Adsorption"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2010Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","2508"],["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","Soft Matter"],["dc.bibliographiccitation.lastpage","2516"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Kocun, Marta"],["dc.contributor.author","Mueller, Waltraut"],["dc.contributor.author","Maskos, Michael"],["dc.contributor.author","Mey, Ingo"],["dc.contributor.author","Geil, Burkhard"],["dc.contributor.author","Steinem, Claudia"],["dc.contributor.author","Janshoff, Andreas"],["dc.date.accessioned","2017-09-07T11:46:43Z"],["dc.date.available","2017-09-07T11:46:43Z"],["dc.date.issued","2010"],["dc.description.abstract","We show how the viscoelastic properties of membranes formed from poly(butadiene)-block-poly(ethylene oxide) (PB(130)-b-PEO(66)) block copolymers can be locally accessed by atomic force microscopy. Polymer membranes are spread on microstructured porous silicon substrates from PB(130)-b-PEO(66) vesicles by decreasing the osmotic pressure of the solution. Local viscoelastic properties of the pore-spanning polymer membranes were obtained from site-specific indentation experiments. Elastic moduli of these membranes were in the order of few MPa, while the elastic moduli of crosslinked membranes considerably increased to few GPa. Furthermore, the energy dissipation and velocity dependence of the hysteresis between indentation and relaxation were quantified and compared with a modified Kelvin-Voigt model. Relaxation times were in the order of hundreds of milliseconds explaining why the stiffness of the membrane increases with increasing indentation velocity."],["dc.identifier.doi","10.1039/b924650a"],["dc.identifier.gro","3143006"],["dc.identifier.isi","000278046300021"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/473"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1744-683X"],["dc.title","Viscoelasticity of pore-spanning polymer membranes derived from giant polymersomes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2009Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","3262"],["dc.bibliographiccitation.issue","17"],["dc.bibliographiccitation.journal","Soft Matter"],["dc.bibliographiccitation.lastpage","3265"],["dc.bibliographiccitation.volume","5"],["dc.contributor.author","Fine, Tamir"],["dc.contributor.author","Mey, Ingo"],["dc.contributor.author","Rommel, Christina"],["dc.contributor.author","Wegener, Joachim"],["dc.contributor.author","Steinem, Claudia"],["dc.contributor.author","Janshoff, Andreas"],["dc.date.accessioned","2017-09-07T11:47:36Z"],["dc.date.available","2017-09-07T11:47:36Z"],["dc.date.issued","2009"],["dc.description.abstract","Apical cell membranes obtained from polar epithelial MDCK II cells were prepared on a highly ordered porous substrate, which allows local elastic mapping by force indentation curves."],["dc.identifier.doi","10.1039/b901714c"],["dc.identifier.gro","3143184"],["dc.identifier.isi","000269062900012"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/670"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1744-683X"],["dc.title","Elasticity mapping of apical cell membranes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2018Journal Article
    [["dc.bibliographiccitation.firstpage","4537"],["dc.bibliographiccitation.issue","16"],["dc.bibliographiccitation.journal","The Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces & Biophysical"],["dc.bibliographiccitation.lastpage","4545"],["dc.bibliographiccitation.volume","122"],["dc.contributor.author","Nöding, Helen"],["dc.contributor.author","Schön, Markus"],["dc.contributor.author","Reinermann, Corinna"],["dc.contributor.author","Dörrer, Nils"],["dc.contributor.author","Kürschner, Aileen"],["dc.contributor.author","Geil, Burkhard"],["dc.contributor.author","Mey, Ingo"],["dc.contributor.author","Heussinger, Claus"],["dc.contributor.author","Janshoff, Andreas"],["dc.contributor.author","Steinem, Claudia"],["dc.date.accessioned","2020-12-10T15:22:43Z"],["dc.date.available","2020-12-10T15:22:43Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1021/acs.jpcb.7b11491"],["dc.identifier.eissn","1520-5207"],["dc.identifier.issn","1520-6106"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/73511"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Rheology of Membrane-Attached Minimal Actin Cortices"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2014Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","9833"],["dc.bibliographiccitation.issue","14"],["dc.bibliographiccitation.journal","Journal of biological chemistry"],["dc.bibliographiccitation.lastpage","9843"],["dc.bibliographiccitation.volume","289"],["dc.contributor.author","Braunger, Julia A."],["dc.contributor.author","Brückner, Bastian R."],["dc.contributor.author","Nehls, Stefan"],["dc.contributor.author","Pietuch, Anna"],["dc.contributor.author","Gerke, Volker"],["dc.contributor.author","Mey, Ingo"],["dc.contributor.author","Janshoff, Andreas"],["dc.contributor.author","Steinem, Claudia"],["dc.date.accessioned","2017-09-07T11:46:19Z"],["dc.date.available","2017-09-07T11:46:19Z"],["dc.date.issued","2014"],["dc.description.abstract","Background: Ezrin can establish a dynamic linkage between plasma membrane and cytoskeleton. Results: The individual bond strength between ezrin and F-actin is small, but the number of attachment sites is significantly altered by phosphatidylinositol 4,5-bisphosphate (PIP2). Conclusion: PIP2 activates ezrin to establish multiple weak ezrin/F-actin interactions. Significance: Plasma membrane tension is maintained by ezrin/F-actin interactions. Direct linkage between the plasma membrane and the actin cytoskeleton is controlled by the protein ezrin, a member of the ezrin-radixin-moesin protein family. To function as a membrane-cytoskeleton linker, ezrin needs to be activated in a process that involves binding of ezrin to phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphorylation of a conserved threonine residue. Here, we used colloidal probe microscopy to quantitatively analyze the interaction between ezrin and F-actin as a function of these activating factors. We show that the measured individual unbinding forces between ezrin and F-actin are independent of the activating parameters, in the range of approximately 50 piconewtons. However, the cumulative adhesion energy greatly increases in the presence of PIP2 demonstrating that a larger number of bonds between ezrin and F-actin has formed. In contrast, the phosphorylation state, represented by phosphor-mimetic mutants of ezrin, only plays a minor role in the activation process. These results are in line with in vivo experiments demonstrating that an increase in PIP2 concentration recruits more ezrin to the apical plasma membrane of polarized cells and significantly increases the membrane tension serving as a measure of the adhesion sites between the plasma membrane and the F-actin network."],["dc.identifier.doi","10.1074/jbc.M113.530659"],["dc.identifier.gro","3142143"],["dc.identifier.isi","000333807000033"],["dc.identifier.pmid","24500715"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/5022"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10 / Funder: Deutsche Forschungsgemeinschaft [STE 884/11-1, GE 514/8-1, GE 514/9-1]"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1083-351X"],["dc.relation.issn","0021-9258"],["dc.title","Phosphatidylinositol 4,5-Bisphosphate Alters the Number of Attachment Sites between Ezrin and Actin Filaments A COLLOIDAL PROBE STUDY "],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2022Journal Article
    [["dc.bibliographiccitation.firstpage","8233"],["dc.bibliographiccitation.issue","41"],["dc.bibliographiccitation.journal","The Journal of Physical Chemistry B"],["dc.bibliographiccitation.lastpage","8244"],["dc.bibliographiccitation.volume","126"],["dc.contributor.author","Kramer, Kristina"],["dc.contributor.author","Sari, Merve"],["dc.contributor.author","Schulze, Kathrin"],["dc.contributor.author","Flegel, Hendrik"],["dc.contributor.author","Stehr, Miriam"],["dc.contributor.author","Mey, Ingo"],["dc.contributor.author","Janshoff, Andreas"],["dc.contributor.author","Steinem, Claudia"],["dc.date.accessioned","2022-12-01T08:30:46Z"],["dc.date.available","2022-12-01T08:30:46Z"],["dc.date.issued","2022"],["dc.identifier.doi","10.1021/acs.jpcb.2c05685"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/117977"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-621"],["dc.relation.eissn","1520-5207"],["dc.relation.issn","1520-6106"],["dc.title","From LUVs to GUVs─How to Cover Micrometer-Sized Pores with Membranes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI