Options
Mey, Ingo P.
Loading...
Preferred name
Mey, Ingo P.
Official Name
Mey, Ingo P.
Alternative Name
Mey, I. P.
Mey, Ingo
Mey, I.
Main Affiliation
Now showing 1 - 10 of 35
2016Conference Abstract [["dc.bibliographiccitation.firstpage","126a"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Biophysical Journal"],["dc.bibliographiccitation.volume","110"],["dc.contributor.author","Schön, Markus"],["dc.contributor.author","Kramer, Corinna"],["dc.contributor.author","Noeding, Helen"],["dc.contributor.author","Mey, Ingo"],["dc.contributor.author","Janshoff, Andreas"],["dc.contributor.author","Steinem, Claudia"],["dc.date.accessioned","2020-12-10T14:22:43Z"],["dc.date.available","2020-12-10T14:22:43Z"],["dc.date.issued","2016"],["dc.format.extent","126A"],["dc.identifier.doi","10.1016/j.bpj.2015.11.727"],["dc.identifier.isi","000375093800128"],["dc.identifier.issn","0006-3495"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/71703"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Cell Press"],["dc.publisher.place","Cambridge"],["dc.relation.eventlocation","Los Angeles, CA"],["dc.relation.issn","1542-0086"],["dc.relation.issn","0006-3495"],["dc.title","Self-Organization of Actomyosin Networks Attached to Artificial Membranes"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI WOS2014Journal Article Research Paper [["dc.bibliographiccitation.firstpage","8186"],["dc.bibliographiccitation.issue","27"],["dc.bibliographiccitation.journal","Langmuir"],["dc.bibliographiccitation.lastpage","8192"],["dc.bibliographiccitation.volume","30"],["dc.contributor.author","Kuhlmann, Jan W."],["dc.contributor.author","Mey, Ingo P."],["dc.contributor.author","Steinem, Claudia"],["dc.date.accessioned","2017-09-07T11:45:42Z"],["dc.date.available","2017-09-07T11:45:42Z"],["dc.date.issued","2014"],["dc.description.abstract","The plasma membrane of animal cells is attached to the cytoskeleton, which significantly contributes to the lateral tension of the membrane. Lateral membrane tension has been shown to be an important physical regulator of cellular processes such as cell motility and morphology as well as exo- and endocytosis. Here, we report on lipid bilayers spanning highly ordered pore arrays, where we can control the lateral membrane tension by chemically varying the surface functionalization of the porous substrate. Surface functionalization was achieved by a gold coating on top of the pore rims of the hexagonal array of pores in silicon nitride substrates with pore radii of 600 nm followed by subsequent incubation with various n-propanolic mixtures of 6-mercapto-1-hexanol (6MH) and O-cholesteryl N-(8'-mercapto-3',6'-dioxaoctyl)carbamate (CPEO3). Pore-spanning membranes composed of 1,2-diphytanoyl-sn-glycero-3-phosphocholine were prepared by spreading giant unilarnellar vesicles on these functionalized porous silicon nitride substrates. Different mixtures of 6MH and CPEO3 provided self-assembled monolayers (SAMs) with different compositions as analyzed by contact angle and PM-IRRAS measurements. Site specific force-indentation experiments on the pore-spanning membranes attached to the different SAMs revealed a clear dependence of the amount of CPEO3 in the monolayer on the lateral membrane tension. While bilayers on pure 6MH monolayers show an average lateral membrane tension of 1.4 mN m(-1), a mixed monolayer of CPEO3 and 6MH obtained from a solution with 9.1 mol % CPEO3 exhibits a lateral tension of 5.0 mN m(-1). From contact angle and PM-IRRAS results, the mole fraction of CPEO3 in solution can be roughly translated into a CPEO3 surface concentration of 40 mol %. Our results clearly demonstrate that the free energy difference between the supported and freestanding part of the membrane depends on the chemical composition of the SAM, which controls the lateral membrane tension."],["dc.identifier.doi","10.1021/la5019086"],["dc.identifier.gro","3142088"],["dc.identifier.isi","000339229000031"],["dc.identifier.pmid","24950370"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4411"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10 / Funder: DFG [SFB 803]"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0743-7463"],["dc.title","Modulating the Lateral Tension of Solvent-Free Pore-Spanning Membranes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2015Journal Article [["dc.bibliographiccitation.firstpage","6831"],["dc.bibliographiccitation.issue","36"],["dc.bibliographiccitation.journal","CrystEngComm"],["dc.bibliographiccitation.lastpage","6837"],["dc.bibliographiccitation.volume","17"],["dc.contributor.author","Harris, Joe"],["dc.contributor.author","Mey, Ingo"],["dc.contributor.author","Hajir, M."],["dc.contributor.author","Mondeshki, M."],["dc.contributor.author","Wolf, Stephan E."],["dc.date.accessioned","2018-11-07T10:02:57Z"],["dc.date.available","2018-11-07T10:02:57Z"],["dc.date.issued","2015"],["dc.description.abstract","Amorphous calcium carbonate films synthesized by the polymer-induced liquid-precursor (PILP) process convert into crystallographically complex calcite spherulites. Tuning the experimental parameters allows for the generation of crystal lattice tilting similar to that found in calcareous biominerals. This contribution evidences the role of spherulitic growth mechanisms in pseudomorphic transformations of calcium carbonate."],["dc.identifier.doi","10.1039/c5ce00441a"],["dc.identifier.isi","000361139300005"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/38340"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Royal Soc Chemistry"],["dc.relation.issn","1466-8033"],["dc.title","Pseudomorphic transformation of amorphous calcium carbonate films follows spherulitic growth mechanisms and can give rise to crystal lattice tilting"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI WOS2020Journal Article [["dc.bibliographiccitation.firstpage","6329"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Nano Letters"],["dc.bibliographiccitation.lastpage","6335"],["dc.bibliographiccitation.volume","20"],["dc.contributor.author","Hubrich, Hanna"],["dc.contributor.author","Mey, Ingo P."],["dc.contributor.author","Brückner, Bastian R."],["dc.contributor.author","Mühlenbrock, Peter"],["dc.contributor.author","Nehls, Stefan"],["dc.contributor.author","Grabenhorst, Lennart"],["dc.contributor.author","Oswald, Tabea"],["dc.contributor.author","Steinem, Claudia"],["dc.contributor.author","Janshoff, Andreas"],["dc.date.accessioned","2020-11-05T15:08:07Z"],["dc.date.available","2020-11-05T15:08:07Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1021/acs.nanolett.0c01769"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/68468"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-352.7"],["dc.relation.eissn","1530-6992"],["dc.relation.issn","1530-6984"],["dc.title","Viscoelasticity of Native and Artificial Actin Cortices Assessed by Nanoindentation Experiments"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI2013Conference Abstract [["dc.bibliographiccitation.journal","European Biophysics Journal"],["dc.bibliographiccitation.volume","42"],["dc.contributor.author","Gleisner, M."],["dc.contributor.author","Dreker, C."],["dc.contributor.author","Mey, Ingo"],["dc.contributor.author","Meinecke, Michael"],["dc.contributor.author","Steinem, Claudia"],["dc.date.accessioned","2018-11-07T09:22:32Z"],["dc.date.available","2018-11-07T09:22:32Z"],["dc.date.issued","2013"],["dc.format.extent","S122"],["dc.identifier.isi","000330215300334"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/29365"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.publisher.place","New york"],["dc.relation.eventlocation","Lisbon, PORTUGAL"],["dc.relation.issn","1432-1017"],["dc.relation.issn","0175-7571"],["dc.relation.orgunit","Institut für Zellbiochemie"],["dc.title","Pore spanning membranes as a model system for the selective generation of membrane curvature"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]Details WOS2020Journal Article Research Paper [["dc.bibliographiccitation.firstpage","1320"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Langmuir"],["dc.bibliographiccitation.lastpage","1328"],["dc.bibliographiccitation.volume","36"],["dc.contributor.author","Schäfer, Jonas"],["dc.contributor.author","Nehls, Jessica"],["dc.contributor.author","Schön, Markus"],["dc.contributor.author","Mey, Ingo"],["dc.contributor.author","Steinem, Claudia"],["dc.date.accessioned","2020-12-10T15:22:49Z"],["dc.date.available","2020-12-10T15:22:49Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1021/acs.langmuir.9b03793"],["dc.identifier.pmid","31951413"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/73545"],["dc.identifier.url","https://sfb1286.uni-goettingen.de/literature/publications/44"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","SFB 1286: Quantitative Synaptologie"],["dc.relation","SFB 1286 | B04: In vitro Rekonstitution von inhibitorischen GABAergen Postsynapsen"],["dc.relation.workinggroup","RG Steinem (Biomolecular Chemistry)"],["dc.title","Leaflet-Dependent Distribution of PtdIns[4,5]P 2 in Supported Model Membranes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2014Book Chapter [["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.lastpage","60"],["dc.bibliographiccitation.seriesnr","260"],["dc.contributor.author","Berger, R."],["dc.contributor.author","Binder, K."],["dc.contributor.author","Diezemann, G."],["dc.contributor.author","Gauss, J."],["dc.contributor.author","Helm, M."],["dc.contributor.author","Hsu, H.-P."],["dc.contributor.author","Janshoff, Andreas"],["dc.contributor.author","Metzroth, T."],["dc.contributor.author","Mey, I."],["dc.contributor.author","Milchev, A."],["dc.contributor.author","Paul, W."],["dc.contributor.author","Rostiashvili, V. G."],["dc.contributor.author","Vilgis, T. A."],["dc.contributor.editor","Basché, Thomas"],["dc.contributor.editor","Müllen, Klaus"],["dc.contributor.editor","Schmidt, Manfred"],["dc.date.accessioned","2022-03-01T11:47:00Z"],["dc.date.available","2022-03-01T11:47:00Z"],["dc.date.issued","2014"],["dc.identifier.doi","10.1007/12_2013_266"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/103881"],["dc.notes.intern","DOI-Import GROB-531"],["dc.publisher","Springer International Publishing"],["dc.publisher.place","Cham"],["dc.relation.crisseries","Advances in Polymer Science"],["dc.relation.eisbn","978-3-319-05828-3"],["dc.relation.isbn","978-3-319-05827-6"],["dc.relation.ispartof","From Single Molecules to Nanoscopically Structured Materials"],["dc.title","Mechanical Properties of Single Molecules and Polymer Aggregates"],["dc.type","book_chapter"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI2016Journal Article Research Paper [["dc.bibliographiccitation.firstpage","2710"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","Biophysical Journal"],["dc.bibliographiccitation.lastpage","2719"],["dc.bibliographiccitation.volume","110"],["dc.contributor.author","Shabardina, Victoria"],["dc.contributor.author","Kramer, Corinna"],["dc.contributor.author","Gerdes, Benjamin"],["dc.contributor.author","Braunger, Julia A."],["dc.contributor.author","Cordes, Andrea"],["dc.contributor.author","Schäfer, Jonas"],["dc.contributor.author","Mey, Ingo"],["dc.contributor.author","Grill, David"],["dc.contributor.author","Gerke, Volker"],["dc.contributor.author","Steinem, Claudia"],["dc.date.accessioned","2017-09-07T11:44:51Z"],["dc.date.available","2017-09-07T11:44:51Z"],["dc.date.issued","2016"],["dc.description.abstract","Ezrin, a protein of the ezrin, radixin, moesin (ERM) family, provides a regulated linkage between the plasma membrane and the cytoskeleton. The hallmark of this linkage is the activation of ezrin by phosphatidylinositol-4,5-bisphosphate (PIP2) binding and a threonine phosphorylation at position 567. To analyze the influence of these activating factors on the organization of ezrin on lipid membranes and the proposed concomitant oligomer-monomer transition, we made use of supported lipid bilayers in conjunction with atomic force microscopy and fluorescence microscopy. Bilayers doped with either PIP2 as the natural receptor lipid of ezrin or a Ni-nitrilotriacetic acid-equipped lipid to bind the proteins via their His6-tags to the lipid membrane were used to bind two different ezrin variants: ezrin wild-type and ezrin T567D mimicking the phosphorylated state. Using a combination of reflectometric interference spectroscopy, atomic force microscopy, and Forster resonance energy transfer experiments, we show that only the ezrin T567D mutant, upon binding to PIP2-containing bilayers, undergoes a remarkable conformational change, which we attribute to an opening of the conformation resulting in monomeric protein on the lipid bilayer."],["dc.identifier.doi","10.1016/j.bpj.2016.05.009"],["dc.identifier.gro","3141663"],["dc.identifier.isi","000378383300018"],["dc.identifier.pmid","27332129"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/6786"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1542-0086"],["dc.relation.issn","0006-3495"],["dc.title","Mode of Ezrin-Membrane Interaction as a Function of PIP2 Binding and Pseudophosphorylation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2010Journal Article Research Paper [["dc.bibliographiccitation.firstpage","2508"],["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","Soft Matter"],["dc.bibliographiccitation.lastpage","2516"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Kocun, Marta"],["dc.contributor.author","Mueller, Waltraut"],["dc.contributor.author","Maskos, Michael"],["dc.contributor.author","Mey, Ingo"],["dc.contributor.author","Geil, Burkhard"],["dc.contributor.author","Steinem, Claudia"],["dc.contributor.author","Janshoff, Andreas"],["dc.date.accessioned","2017-09-07T11:46:43Z"],["dc.date.available","2017-09-07T11:46:43Z"],["dc.date.issued","2010"],["dc.description.abstract","We show how the viscoelastic properties of membranes formed from poly(butadiene)-block-poly(ethylene oxide) (PB(130)-b-PEO(66)) block copolymers can be locally accessed by atomic force microscopy. Polymer membranes are spread on microstructured porous silicon substrates from PB(130)-b-PEO(66) vesicles by decreasing the osmotic pressure of the solution. Local viscoelastic properties of the pore-spanning polymer membranes were obtained from site-specific indentation experiments. Elastic moduli of these membranes were in the order of few MPa, while the elastic moduli of crosslinked membranes considerably increased to few GPa. Furthermore, the energy dissipation and velocity dependence of the hysteresis between indentation and relaxation were quantified and compared with a modified Kelvin-Voigt model. Relaxation times were in the order of hundreds of milliseconds explaining why the stiffness of the membrane increases with increasing indentation velocity."],["dc.identifier.doi","10.1039/b924650a"],["dc.identifier.gro","3143006"],["dc.identifier.isi","000278046300021"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/473"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1744-683X"],["dc.title","Viscoelasticity of pore-spanning polymer membranes derived from giant polymersomes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI WOS2017Journal Article [["dc.bibliographiccitation.firstpage","14175"],["dc.bibliographiccitation.issue","49"],["dc.bibliographiccitation.journal","Langmuir : the ACS journal of surfaces and colloids"],["dc.bibliographiccitation.lastpage","14183"],["dc.bibliographiccitation.volume","33"],["dc.contributor.author","Teske, Nelli"],["dc.contributor.author","Sibold, Jeremias"],["dc.contributor.author","Schumacher, Johannes"],["dc.contributor.author","Teiwes, Nikolas K."],["dc.contributor.author","Gleisner, Martin"],["dc.contributor.author","Mey, Ingo"],["dc.contributor.author","Steinem, Claudia"],["dc.date.accessioned","2018-01-17T13:00:51Z"],["dc.date.available","2018-01-17T13:00:51Z"],["dc.date.issued","2017"],["dc.description.abstract","A number of techniques has been developed and analyzed in recent years to generate pore-spanning membranes (PSMs). While quite a number of methods rely on nanoporous substrates, only a few use micrometer-sized pores to be able to individually resolve suspending membranes by means of fluorescence microscopy. To be able to produce PSMs on pores that are micrometer in size, an orthogonal functionalization strategy resulting in a hydrophilic surface is highly desirable. Here, we report on a method to prepare PSMs based on the evaporation of a thin layer of silicon monoxide on top of the porous substrate. PM-IRRAS experiments demonstrate that the final surface is composed of SiOx with 1 < x < 2. The hydrophilic surface turned out to be well suited to spread giant unilamellar vesicles forming PSMs. As the method does not rely on a gold coating as frequently used for orthogonal functionalization, fluorescence micrographs provide information not only from the freestanding membrane areas but also from the supported ones. The observation of the entire PSM area enabled us to observe phase-separation in these membranes on the freestanding and supported parts as well as protein binding and possible lipid reorganization of the membranes induced by binding of the protein Shiga toxin."],["dc.identifier.doi","10.1021/acs.langmuir.7b02727"],["dc.identifier.pmid","29148811"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11698"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation.eissn","1520-5827"],["dc.title","Continuous Pore-Spanning Lipid Bilayers on Silicon Oxide-Coated Porous Substrates"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI PMID PMC