Options
Gras, Heribert
Loading...
Preferred name
Gras, Heribert
Official Name
Gras, Heribert
Alternative Name
Gras, H.
Main Affiliation
Now showing 1 - 2 of 2
2017Journal Article [["dc.bibliographiccitation.journal","Frontiers in Psychiatry"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Corthals, Kristina"],["dc.contributor.author","Heukamp, Alina Sophia"],["dc.contributor.author","Kossen, Robert"],["dc.contributor.author","Großhennig, Isabel"],["dc.contributor.author","Hahn, Nina"],["dc.contributor.author","Gras, Heribert"],["dc.contributor.author","Göpfert, Martin C."],["dc.contributor.author","Heinrich, Ralf"],["dc.contributor.author","Geurten, Bart R. H."],["dc.date.accessioned","2019-07-09T11:43:34Z"],["dc.date.available","2019-07-09T11:43:34Z"],["dc.date.issued","2017"],["dc.description.abstract","The genome of Drosophila melanogaster includes homologs to approximately one-third of the currently known human disease genes. Flies and humans share many biological processes, including the principles of information processing by excitable neurons, synaptic transmission, and the chemical signals involved in intercellular communication. Studies on the molecular and behavioral impact of genetic risk factors of human neuro- developmental disorders [autism spectrum disorders (ASDs), schizophrenia, attention deficit hyperactivity disorders, and Tourette syndrome] increasingly use the well-studied social behavior of D. melanogaster, an organism that is amenable to a large variety of genetic manipulations. Neuroligins (Nlgs) are a family of phylogenetically conserved postsynaptic adhesion molecules present (among others) in nematodes, insects, and mammals. Impaired function of Nlgs (particularly of Nlg 3 and 4) has been associated with ASDs in humans and impaired social and communication behavior in mice. Making use of a set of behavioral and social assays, we, here, analyzed the impact of two Drosophila Nlgs, Dnlg2 and Dnlg4, which are differentially expressed at excitatory and inhibitory central nervous synapses, respectively. Both Nlgs seem to be associated with diurnal activity and social behavior. Even though deficiencies in Dnlg2 and Dnlg4 appeared to have no effects on sensory or motor systems, they differentially impacted on social interactions, suggesting that social behavior is distinctly regulated by these Nlgs."],["dc.identifier.doi","10.3389/fpsyt.2017.00113"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14580"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/58919"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.publisher","Frontiers Media S.A."],["dc.relation.eissn","1664-0640"],["dc.relation.issn","1664-0640"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","570"],["dc.title","Neuroligins Nlg2 and Nlg4 Affect Social Behavior in Drosophila melanogaster"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2019Journal Article [["dc.bibliographiccitation.artnumber","3974"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Scientific Reports"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Giraldo, Diego"],["dc.contributor.author","Adden, Andrea"],["dc.contributor.author","Kuhlemann, Ilyas"],["dc.contributor.author","Gras, Heribert"],["dc.contributor.author","Geurten, Bart R. H."],["dc.date.accessioned","2019-07-09T11:50:14Z"],["dc.date.available","2019-07-09T11:50:14Z"],["dc.date.issued","2019"],["dc.description.abstract","Sensing environmental temperatures is essential for the survival of ectothermic organisms. In Drosophila, two of the most used methodologies to study temperature preferences (TP) and the genes involved in thermosensation are two-choice assays and temperature gradients. Whereas two-choice assays reveal a relative TP, temperature gradients can identify the absolute Tp. One drawback of gradients is that small ectothermic animals are susceptible to cold-trapping: a physiological inability to move at the cold area of the gradient. Often cold-trapping cannot be avoided, biasing the resulting TP to lower temperatures. Two mathematical models were previously developed to correct for cold-trapping. These models, however, focus on group behaviour which can lead to overestimation of cold-trapping due to group aggregation. Here we present a mathematical model that simulates the behaviour of individual Drosophila in temperature gradients. The model takes the spatial dimension and temperature difference of the gradient into account, as well as the rearing temperature of the flies. Furthermore, it allows the quantification of cold-trapping and reveals unbiased TP. Additionally, our model reveals that flies have a range of tolerable temperatures, and this measure is more informative about the behaviour than commonly used TP. Online simulation is hosted at http://igloo.uni-goettingen.de . The code can be accessed at https://github.com/zerotonin/igloo ."],["dc.identifier.doi","10.1038/s41598-019-40459-z"],["dc.identifier.pmid","30850647"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15887"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59728"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","2045-2322"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","570"],["dc.title","Correcting locomotion dependent observation biases in thermal preference of Drosophila"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC