Now showing 1 - 6 of 6
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","720"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Microorganisms"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Schwanbeck, Julian"],["dc.contributor.author","Bohne, Wolfgang"],["dc.contributor.author","Hasdemir, Ufuk"],["dc.contributor.author","Groß, Uwe"],["dc.contributor.author","Pfeifer, Yvonne"],["dc.contributor.author","Bunk, Boyke"],["dc.contributor.author","Riedel, Thomas"],["dc.contributor.author","Spröer, Cathrin"],["dc.contributor.author","Overmann, Jörg"],["dc.contributor.author","Zautner, Andreas E."],["dc.contributor.author","Frickmann, Hagen"],["dc.date.accessioned","2021-06-01T09:42:39Z"],["dc.date.available","2021-06-01T09:42:39Z"],["dc.date.issued","2021"],["dc.description.abstract","Mobile genetic elements, such as plasmids, facilitate the spread of antibiotic resistance genes in Enterobacterales. In line with this, we investigated the plasmid-resistome of seven blaOXA-48 gene-carrying Klebsiella pneumoniae isolates, which were isolated between 2013 and 2014 at the University Medical Center in Göttingen, Germany. All isolates were subjected to complete genome sequencing including the reconstruction of entire plasmid sequences. In addition, phenotypic resistance testing was conducted. The seven isolates comprised both disease-associated isolates and colonizers isolated from five patients. They fell into two clusters of three sequence type (ST)101 and two ST11 isolates, respectively; and ST15 and ST23 singletons. The seven isolates harbored various plasmids of the incompatibility (Inc) groups IncF, IncL/M, IncN, IncR, and a novel plasmid chimera. All blaOXA-48 genes were encoded on the IncL/M plasmids. Of note, distinct phenotypical resistance patterns associated with different sets of resistance genes encoded by IncL/M and IncR plasmids were observed among isolates of the ST101 cluster in spite of high phylogenetic relatedness of the bacterial chromosomes, suggesting nosocomial transmission. This highlights the importance of plasmid uptake and plasmid recombination events for the fast generation of resistance variability after clonal transmission. In conclusion, this study contributes a piece in the puzzle of molecular epidemiology of resistance gene-carrying plasmids in K. pneumoniae in Germany."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2021"],["dc.identifier.doi","10.3390/microorganisms9040720"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/85312"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.relation.eissn","2076-2607"],["dc.relation.orgunit","Institut für Medizinische Mikrobiologie"],["dc.rights","CC BY 4.0"],["dc.title","Detection of a New Resistance-Mediating Plasmid Chimera in a blaOXA-48-Positive Klebsiella pneumoniae Strain at a German University Hospital"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2019Journal Article
    [["dc.bibliographiccitation.artnumber","2087"],["dc.bibliographiccitation.journal","Frontiers in Microbiology"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Emele, Matthias F."],["dc.contributor.author","Joppe, Felix M."],["dc.contributor.author","Riedel, Thomas"],["dc.contributor.author","Overmann, Jörg"],["dc.contributor.author","Rupnik, Maja"],["dc.contributor.author","Cooper, Paul"],["dc.contributor.author","Kusumawati, R. Lia"],["dc.contributor.author","Berger, Fabian K."],["dc.contributor.author","Laukien, Friederike"],["dc.contributor.author","Zimmermann, Ortrud"],["dc.contributor.author","Bohne, Wolfgang"],["dc.contributor.author","Groß, Uwe"],["dc.contributor.author","Bader, Oliver"],["dc.contributor.author","Zautner, Andreas E."],["dc.date.accessioned","2019-09-24T08:07:22Z"],["dc.date.available","2019-09-24T08:07:22Z"],["dc.date.issued","2019"],["dc.description.abstract","Clostridioides difficile, a Gram-positive spore-forming bacterium, is the leading cause of nosocomial diarrhea worldwide and therefore a substantial burden to the healthcare system. During the past decade, hypervirulent PCR-ribotypes (RT) e.g., RT027 or RT176 emerged rapidly all over the world, associated with both, increased severity and mortality rates. It is thus of great importance to identify epidemic strains such as RT027 and RT176 as fast as possible. While commonly used diagnostic methods, e.g., multilocus sequence typing (MLST) or PCR-ribotyping, are time-consuming, proteotyping offers a fast, inexpensive, and reliable alternative solution. In this study, we established a MALDI-TOF-based typing scheme for C. difficile. A total of 109 ribotyped strains representative for five MLST clades were analyzed by MALDI-TOF. MLST, based on whole genome sequences, and PCR-ribotyping were used as reference methods. Isoforms of MS-detectable biomarkers, typically ribosomal proteins, were related with the deduced amino acid sequences and added to the C. difficile proteotyping scheme. In total, we were able to associate nine biomarkers with their encoding genes and include them in our proteotyping scheme. The discriminatory capacity of the C. difficile proteotyping scheme was mainly based on isoforms of L28-M (2 main isoforms), L35-M (4 main isoforms), and S20-M (2 main isoforms) giving rise to at least 16 proteotyping-derived types. In our test population, five of these 16 proteotyping-derived types were detected. These five proteotyping-derived types did not correspond exactly to the included five MLST-based C. difficile clades, nevertheless the subtyping depth of both methods was equivalent. Most importantly, proteotyping-derived clade B contained only isolates of the hypervirulent RT027 and RT176. Proteotyping is a stable and easy-to-perform intraspecies typing method and a promising alternative to currently used molecular techniques. It is possible to distinguish the group of RT027 and RT176 isolates from non-RT027/non-RT176 isolates using proteotyping, providing a valuable diagnostic tool."],["dc.identifier.doi","10.3389/fmicb.2019.02087"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16398"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/62451"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","1664-302X"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Proteotyping of Clostridioides difficile as Alternate Typing Method to Ribotyping Is Able to Distinguish the Ribotypes RT027 and RT176 From Other Ribotypes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2018Journal Article
    [["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","BMC Genomics"],["dc.bibliographiccitation.lastpage","14"],["dc.bibliographiccitation.volume","19"],["dc.contributor.author","Groß, Uwe"],["dc.contributor.author","Brzuszkiewicz, Elzbieta B."],["dc.contributor.author","Gunka, Katrin"],["dc.contributor.author","Starke, Jessica"],["dc.contributor.author","Riedel, Thomas"],["dc.contributor.author","Bunk, Boyke"],["dc.contributor.author","Spröer, Cathrin"],["dc.contributor.author","Wetzel, Daniela"],["dc.contributor.author","Poehlein, Anja"],["dc.contributor.author","Chibani, Cynthia"],["dc.contributor.author","Bohne, Wolfgang"],["dc.contributor.author","Overmann, Jörg"],["dc.contributor.author","Zimmermann, Ortrud"],["dc.contributor.author","Daniel, Rolf"],["dc.contributor.author","Liesegang, Heiko"],["dc.date.accessioned","2019-07-09T11:45:11Z"],["dc.date.available","2019-07-09T11:45:11Z"],["dc.date.issued","2018"],["dc.description.abstract","BACKGROUND: Clostridioides difficile infections (CDI) have emerged over the past decade causing symptoms that range from mild, antibiotic-associated diarrhea (AAD) to life-threatening toxic megacolon. In this study, we describe a multiple and isochronal (mixed) CDI caused by the isolates DSM 27638, DSM 27639 and DSM 27640 that already initially showed different morphotypes on solid media. RESULTS: The three isolates belonging to the ribotypes (RT) 012 (DSM 27639) and 027 (DSM 27638 and DSM 27640) were phenotypically characterized and high quality closed genome sequences were generated. The genomes were compared with seven reference strains including three strains of the RT 027, two of the RT 017, and one of the RT 078 as well as a multi-resistant RT 012 strain. The analysis of horizontal gene transfer events revealed gene acquisition incidents that sort the strains within the time line of the spread of their RTs within Germany. We could show as well that horizontal gene transfer between the members of different RTs occurred within this multiple infection. In addition, acquisition and exchange of virulence-related features including antibiotic resistance genes were observed. Analysis of the two genomes assigned to RT 027 revealed three single nucleotide polymorphisms (SNPs) and apparently a regional genome modification within the flagellar switch that regulates the fli operon. CONCLUSION: Our findings show that (i) evolutionary events based on horizontal gene transfer occur within an ongoing CDI and contribute to the adaptation of the species by the introduction of new genes into the genomes, (ii) within a multiple infection of a single patient the exchange of genetic material was responsible for a much higher genome variation than the observed SNPs."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2018"],["dc.identifier.doi","10.1186/s12864-017-4368-0"],["dc.identifier.pmid","29291715"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15054"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59178"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.intern","In goescholar not merged with http://resolver.sub.uni-goettingen.de/purl?gs-1/15123 but duplicate"],["dc.notes.status","final"],["dc.relation.issn","1471-2164"],["dc.rights","CC BY 4.0"],["dc.rights.access","openAccess"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","570"],["dc.title","Comparative genome and phenotypic analysis of three Clostridioides difficile strains isolated from a single patient provide insight into multiple infection of C. difficile."],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2018Journal Article
    [["dc.bibliographiccitation.artnumber","1843"],["dc.bibliographiccitation.journal","Frontiers in Microbiology"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Seugendo, Mwanaisha"],["dc.contributor.author","Janssen, Iryna"],["dc.contributor.author","Lang, Vanessa"],["dc.contributor.author","Hasibuan, Irene"],["dc.contributor.author","Bohne, Wolfgang"],["dc.contributor.author","Cooper, Paul"],["dc.contributor.author","Daniel, Rolf"],["dc.contributor.author","Gunka, Katrin"],["dc.contributor.author","Kusumawati, R. L."],["dc.contributor.author","Mshana, Stephen E."],["dc.contributor.author","von Müller, Lutz"],["dc.contributor.author","Okamo, Benard"],["dc.contributor.author","Ortlepp, Jan R."],["dc.contributor.author","Overmann, Jörg"],["dc.contributor.author","Riedel, Thomas"],["dc.contributor.author","Rupnik, Maja"],["dc.contributor.author","Zimmermann, Ortrud"],["dc.contributor.author","Groß, Uwe"],["dc.date.accessioned","2019-07-09T11:45:47Z"],["dc.date.available","2019-07-09T11:45:47Z"],["dc.date.issued","2018"],["dc.description.abstract","Clostridioides (Clostridium) difficile infections (CDI) are considered worldwide as emerging health threat. Uptake of C. difficile spores may result in asymptomatic carrier status or lead to CDI that could range from mild diarrhea, eventually developing into pseudomembranous colitis up to a toxic megacolon that often results in high mortality. Most epidemiological studies to date have been performed in middle- and high income countries. Beside others, the use of antibiotics and the composition of the microbiome have been identified as major risk factors for the development of CDI. We therefore postulate that prevalence rates of CDI and the distribution of C. difficile strains differ between geographical regions depending on the regional use of antibiotics and food habits. A total of 593 healthy control individuals and 608 patients suffering from diarrhea in communities in Germany, Ghana, Tanzania and Indonesia were selected for a comparative multi-center cross-sectional study. The study populations were screened for the presence of C. difficile in stool samples. Cultured C. difficile strains (n = 84) were further subtyped and characterized using PCR-ribotyping, determination of toxin production, and antibiotic susceptibility testing. Prevalence rates of C. difficile varied widely between the countries. Whereas high prevalence rates were observed in symptomatic patients living in Germany and Indonesia (24.0 and 14.7%), patients from Ghana and Tanzania showed low detection rates (4.5 and 6.4%). Differences were also obvious for ribotype distribution and toxin repertoires. Toxin A+/B+ ribotypes 001/072 and 078 predominated in Germany, whereas most strains isolated from Indonesian patients belonged to toxin A+/B+ ribotype SLO160 and toxin A-/B+ ribotype 017. With 42.9-73.3%, non-toxigenic strains were most abundant in Africa, but were also found in Indonesia at a rate of 18.2%. All isolates were susceptible to vancomycin and metronidazole. Mirroring the antibiotic use, however, moxifloxacin resistance was absent in African C. difficile isolates but present in Indonesian (24.2%) and German ones (65.5%). This study showed that CDI is a global health threat with geographically different prevalence rates which might reflect distinct use of antibiotics. Significant differences for distributions of ribotypes, toxin production, and antibiotic susceptibilities were observed."],["dc.identifier.doi","10.3389/fmicb.2018.01843"],["dc.identifier.pmid","30131799"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15318"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59311"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","1664-302X"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject.ddc","610"],["dc.title","Prevalence and Strain Characterization of Clostridioides (Clostridium) difficile in Representative Regions of Germany, Ghana, Tanzania and Indonesia - A Comparative Multi-Center Cross-Sectional Study"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2019Journal Article
    [["dc.bibliographiccitation.artnumber","4244"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Scientific Reports"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Emele, Matthias Frederik"],["dc.contributor.author","Možina, Sonja Smole"],["dc.contributor.author","Lugert, Raimond"],["dc.contributor.author","Bohne, Wolfgang"],["dc.contributor.author","Masanta, Wycliffe Omurwa"],["dc.contributor.author","Riedel, Thomas"],["dc.contributor.author","Groß, Uwe"],["dc.contributor.author","Bader, Oliver"],["dc.contributor.author","Zautner, Andreas Erich"],["dc.date.accessioned","2019-07-09T11:50:14Z"],["dc.date.available","2019-07-09T11:50:14Z"],["dc.date.issued","2019"],["dc.description.abstract","Besides Campylobacter jejuni, Campylobacter coli is the most common bacterial cause of gastroenteritis worldwide. C. coli is subdivided into three clades, which are associated with sample source. Clade 1 isolates are associated with acute diarrhea in humans whereas clade 2 and 3 isolates are more commonly obtained from environmental waters. The phylogenetic classification of an isolate is commonly done using laborious multilocus sequence typing (MLST). The aim of this study was to establish a proteotyping scheme using MALDI-TOF MS to offer an alternative to sequence-based methods. A total of 97 clade-representative C. coli isolates were analyzed by MALDI-TOF-based intact cell mass spectrometry (ICMS) and evaluated to establish a C. coli proteotyping scheme. MLST was used as reference method. Different isoforms of the detectable biomarkers, resulting in biomarker mass shifts, were associated with their amino acid sequences and included into the C. coli proteotyping scheme. In total, we identified 16 biomarkers to differentiate C. coli into the three clades and three additional sub-clades of clade 1. In this study, proteotyping has been successfully adapted to C. coli. The established C. coli clades and sub-clades can be discriminated using this method. Especially the clinically relevant clade 1 isolates can be differentiated clearly."],["dc.identifier.doi","10.1038/s41598-019-40842-w"],["dc.identifier.pmid","30862911"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15886"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59727"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","2045-2322"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","610"],["dc.title","Proteotyping as alternate typing method to differentiate Campylobacter coli clades"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2018Journal Article
    [["dc.bibliographiccitation.artnumber","111"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","BMC Microbiology"],["dc.bibliographiccitation.volume","18"],["dc.contributor.author","Lübke, Anastasia-Lisa"],["dc.contributor.author","Minatelli, Sabrina"],["dc.contributor.author","Riedel, Thomas"],["dc.contributor.author","Lugert, Raimond"],["dc.contributor.author","Schober, Isabel"],["dc.contributor.author","Spröer, Cathrin"],["dc.contributor.author","Overmann, Jörg"],["dc.contributor.author","Groß, Uwe"],["dc.contributor.author","Zautner, Andreas E."],["dc.contributor.author","Bohne, Wolfgang"],["dc.date.accessioned","2019-07-09T11:45:52Z"],["dc.date.available","2019-07-09T11:45:52Z"],["dc.date.issued","2018"],["dc.description.abstract","Background Campylobacter jejuni is one of the most common bacterial causes of food-borne enteritis worldwide. Chemotaxis in C. jejuni is known to be critical for the successful colonization of the host and key for the adaptation of the microbial species to different host environments. In C. jejuni, chemotaxis is regulated by a complex interplay of 13 or even more different chemoreceptors, also known as transducer-like proteins (Tlps). Recently, a novel chemoreceptor gene, tlp12, was described and found to be present in 29.5% of the investigated C. jejuni strains. Results In this study, we present a functional analysis of Tlp12 with the aid of a tlp12 knockout mutant of the C. jejuni strain A17. Substrate specificity was investigated by capillary chemotaxis assays and revealed that Tlp12 plays an important role in chemotaxis towards glutamate and pyruvate. Moreover, the Δtlp12 mutant shows increased swarming motility in soft agar assays, an enhanced invasion rate into Caco-2 cells and an increased autoagglutination rate. The growth rate was slightly reduced in the Δtlp12 mutant. The identified phenotypes were in partial restored by complementation with the wild type gene. Tlp12-harboring C. jejuni strains display a strong association with chicken, whose excreta are known to contain high glutamate levels. Conclusions TLP12 is a chemoreceptor for glutamate and pyruvate recognition. Deletion of tlp12 has an influence on distinct physiological features, such as growth rate, swarming motility, autoagglutination and invasiveness."],["dc.identifier.doi","10.1186/s12866-018-1254-0"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15333"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59326"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.intern","In goescholar not merged with http://resolver.sub.uni-goettingen.de/purl?gs-1/15404 but duplicate"],["dc.rights","CC BY 4.0"],["dc.rights.holder","The Author(s)."],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","The transducer-like protein Tlp12 of Campylobacter jejuni is involved in glutamate and pyruvate chemotaxis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI