Now showing 1 - 10 of 29
  • 2020Journal Article
    [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Moore, Sharlen"],["dc.contributor.author","Meschkat, Martin"],["dc.contributor.author","Ruhwedel, Torben"],["dc.contributor.author","Trevisiol, Andrea"],["dc.contributor.author","Tzvetanova, Iva D."],["dc.contributor.author","Battefeld, Arne"],["dc.contributor.author","Kusch, Kathrin"],["dc.contributor.author","Kole, Maarten H. P."],["dc.contributor.author","Strenzke, Nicola"],["dc.contributor.author","Möbius, Wiebke"],["dc.contributor.author","de Hoz, Livia"],["dc.contributor.author","Nave, Klaus-Armin"],["dc.date.accessioned","2021-04-14T08:31:48Z"],["dc.date.available","2021-04-14T08:31:48Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1038/s41467-020-19152-7"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/83719"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation.eissn","2041-1723"],["dc.title","A role of oligodendrocytes in information processing"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2021Preprint
    [["dc.contributor.author","Djannatian, Minou"],["dc.contributor.author","Weikert, Ulrich"],["dc.contributor.author","Safaiyan, Shima"],["dc.contributor.author","Wrede, Christoph"],["dc.contributor.author","Deichsel, Cassandra"],["dc.contributor.author","Kislinger, Georg"],["dc.contributor.author","Ruhwedel, Torben"],["dc.contributor.author","Campbell, Douglas S."],["dc.contributor.author","van Ham, Tjakko"],["dc.contributor.author","Schmid, Bettina"],["dc.contributor.author","Hegermann, Jan"],["dc.contributor.author","Möbius, Wiebke"],["dc.contributor.author","Schifferer, Martina"],["dc.contributor.author","Simons, Mikael"],["dc.date.accessioned","2022-08-19T08:17:44Z"],["dc.date.available","2022-08-19T08:17:44Z"],["dc.date.issued","2021"],["dc.identifier.doi","10.1101/2021.02.02.429485"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/113031"],["dc.identifier.url","https://rdp.sfb274.de/literature/publications/14"],["dc.relation","TRR 274: Checkpoints of Central Nervous System Recovery"],["dc.relation","TRR 274 | B01: The role of inflammatory cytokine signaling for efficient remyelination in multiple sclerosis"],["dc.relation.workinggroup","RG Schifferer"],["dc.relation.workinggroup","RG Simons (The Biology of Glia in Development and Disease)"],["dc.title","Myelin biogenesis is associated with pathological ultrastructure that is resolved by microglia during development"],["dc.type","preprint"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2019Journal Article Erratum
    [["dc.bibliographiccitation.firstpage","673"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Acta Neuropathologica"],["dc.bibliographiccitation.lastpage","674"],["dc.bibliographiccitation.volume","138"],["dc.contributor.author","Stumpf, Sina K."],["dc.contributor.author","Berghoff, Stefan A."],["dc.contributor.author","Trevisiol, Andrea"],["dc.contributor.author","Spieth, Lena"],["dc.contributor.author","Düking, Tim"],["dc.contributor.author","Schneider, Lennart V."],["dc.contributor.author","Schlaphoff, Lennart"],["dc.contributor.author","Dreha-Kulaczewski, Steffi"],["dc.contributor.author","Bley, Annette"],["dc.contributor.author","Burfeind, Dinah"],["dc.contributor.author","Kusch, Kathrin"],["dc.contributor.author","Mitkovski, Miso"],["dc.contributor.author","Ruhwedel, Torben"],["dc.contributor.author","Guder, Philipp"],["dc.contributor.author","Röhse, Heiko"],["dc.contributor.author","Denecke, Jonas"],["dc.contributor.author","Gärtner, Jutta"],["dc.contributor.author","Möbius, Wiebke"],["dc.contributor.author","Nave, Klaus-Armin"],["dc.contributor.author","Saher, Gesine"],["dc.date.accessioned","2019-11-04T14:10:22Z"],["dc.date.accessioned","2021-10-27T13:21:24Z"],["dc.date.available","2019-11-04T14:10:22Z"],["dc.date.available","2021-10-27T13:21:24Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1007/s00401-019-02064-2"],["dc.identifier.pmid","31482207"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16592"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/92019"],["dc.language.iso","en"],["dc.notes.intern","Migrated from goescholar"],["dc.relation.eissn","1432-0533"],["dc.relation.iserratumof","/handle/2/62293"],["dc.relation.issn","1432-0533"],["dc.relation.issn","0001-6322"],["dc.relation.orgunit","Universitätsmedizin Göttingen"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","610"],["dc.title","Correction to: Ketogenic diet ameliorates axonal defects and promotes myelination in Pelizaeus–Merzbacher disease"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","erratum_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2017Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","012001"],["dc.bibliographiccitation.journal","Journal of Physics. Conference Series"],["dc.bibliographiccitation.volume","849"],["dc.contributor.author","Töpperwien, Mareike"],["dc.contributor.author","Krenkel, Martin"],["dc.contributor.author","Ruhwedel, Torben"],["dc.contributor.author","Möbius, Wiebke"],["dc.contributor.author","Pacureanu, A."],["dc.contributor.author","Cloetens, Peter"],["dc.contributor.author","Salditt, Tim"],["dc.date.accessioned","2020-03-11T09:13:55Z"],["dc.date.available","2020-03-11T09:13:55Z"],["dc.date.issued","2017"],["dc.description.abstract","We present propagation-based phase-contrast tomography of mouse sciatic nerves stained with osmium, leading to an enhanced contrast in the myelin sheath around the axons, in order to visualize the threedimensional (3D) structure of the nerve. We compare different experimental parameters and show that contrast and resolution are high enough to identify single axons in the nerve, including characteristic functional structures such as Schmidt-Lanterman incisures."],["dc.identifier.doi","10.1088/1742-6596/849/1/012001"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/63293"],["dc.language.iso","en"],["dc.relation.issn","1742-6588"],["dc.relation.issn","1742-6596"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.rights","CC BY 3.0"],["dc.subject.gro","x-ray imaging"],["dc.subject.gro","biomedical tomography"],["dc.title","Phase-contrast tomography of sciatic nerves: image quality and experimental parameters"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2020Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","47"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Neuroscience"],["dc.bibliographiccitation.lastpage","60"],["dc.bibliographiccitation.volume","24"],["dc.contributor.author","Berghoff, Stefan A."],["dc.contributor.author","Spieth, Lena"],["dc.contributor.author","Sun, Ting"],["dc.contributor.author","Hosang, Leon"],["dc.contributor.author","Schlaphoff, Lennart"],["dc.contributor.author","Depp, Constanze"],["dc.contributor.author","Düking, Tim"],["dc.contributor.author","Winchenbach, Jan"],["dc.contributor.author","Neuber, Jonathan"],["dc.contributor.author","Ewers, David"],["dc.contributor.author","Scholz, Patricia"],["dc.contributor.author","van der Meer, Franziska"],["dc.contributor.author","Cantuti-Castelvetri, Ludovico"],["dc.contributor.author","Sasmita, Andrew O."],["dc.contributor.author","Meschkat, Martin"],["dc.contributor.author","Ruhwedel, Torben"],["dc.contributor.author","Möbius, Wiebke"],["dc.contributor.author","Sankowski, Roman"],["dc.contributor.author","Prinz, Marco"],["dc.contributor.author","Huitinga, Inge"],["dc.contributor.author","Sereda, Michael W."],["dc.contributor.author","Odoardi, Francesca"],["dc.contributor.author","Ischebeck, Till"],["dc.contributor.author","Simons, Mikael"],["dc.contributor.author","Stadelmann-Nessler, Christine"],["dc.contributor.author","Edgar, Julia M."],["dc.contributor.author","Nave, Klaus-Armin"],["dc.contributor.author","Saher, Gesine"],["dc.date.accessioned","2021-04-14T08:27:05Z"],["dc.date.available","2021-04-14T08:27:05Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1038/s41593-020-00757-6"],["dc.identifier.pmid","33349711"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/82162"],["dc.identifier.url","https://rdp.sfb274.de/literature/publications/11"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","TRR 274: Checkpoints of Central Nervous System Recovery"],["dc.relation","TRR 274 | A04: The role of the meninges in the resolution of acute autoimmune CNS lesions"],["dc.relation.eissn","1546-1726"],["dc.relation.issn","1097-6256"],["dc.relation.workinggroup","RG Cantuti"],["dc.relation.workinggroup","RG Nave (Neurogenetics)"],["dc.relation.workinggroup","RG Odoardi (Echtzeitdarstellung neuroimmunologischer Prozesse)"],["dc.relation.workinggroup","RG Simons (The Biology of Glia in Development and Disease)"],["dc.relation.workinggroup","RG Stadelmann-Nessler"],["dc.title","Microglia facilitate repair of demyelinated lesions via post-squalene sterol synthesis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2020Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","S1047847720300587"],["dc.bibliographiccitation.firstpage","107492"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Journal of Structural Biology"],["dc.bibliographiccitation.volume","210"],["dc.contributor.author","Steyer, Anna M."],["dc.contributor.author","Ruhwedel, Torben"],["dc.contributor.author","Nardis, Christos"],["dc.contributor.author","Werner, Hauke B."],["dc.contributor.author","Nave, Klaus-Armin"],["dc.contributor.author","Möbius, Wiebke"],["dc.date.accessioned","2022-03-01T11:45:16Z"],["dc.date.available","2022-03-01T11:45:16Z"],["dc.date.issued","2020"],["dc.description.abstract","Advances in electron microscopy including improved imaging techniques and state-of-the-art detectors facilitate imaging of larger tissue volumes with electron microscopic resolution. In combination with genetic tools for the generation of mouse mutants this allows assessing the three-dimensional (3D) characteristics of pathological features in disease models. Here we revisited the axonal pathology in the central nervous system of a mouse model of spastic paraplegia type 2, the Plp−/Y mouse. Although PLP is a bona fide myelin protein, the major hallmark of the disease in both SPG2 patients and mouse models are axonal swellings comprising accumulations of numerous organelles including mitochondria, gradually leading to irreversible axonal loss. To assess the number and morphology of axonal mitochondria and the overall myelin preservation we evaluated two sample preparation techniques, chemical fixation or high-pressure freezing and freeze substitution, with respect to the objective of 3D visualization. Both methods allowed visualizing distribution and morphological details of axonal mitochondria. In Plp−/Y mice the number of mitochondria is 2-fold increased along the entire axonal length. Mitochondria are also found in the excessive organelle accumulations within axonal swellings. In addition, organelle accumulations were detected within the myelin sheath and the inner tongue. We find that 3D electron microscopy is required for a comprehensive understanding of the size, content and frequency of axonal swellings, the hallmarks of axonal pathology."],["dc.identifier.doi","10.1016/j.jsb.2020.107492"],["dc.identifier.pii","S1047847720300587"],["dc.identifier.pmid","32156581"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/103268"],["dc.identifier.url","https://for2848.gwdguser.de/literature/publications/23"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-531"],["dc.relation","FOR 2848: Architektur und Heterogenität der inneren mitochondrialen Membran auf der Nanoskala"],["dc.relation","FOR 2848 | P08: Strukturelle und funktionale Veränderungen der inneren mitochondrialen Membran axonaler Mitochondrien in vivo in einem dymyelinisierenden Mausmodell"],["dc.relation.issn","1047-8477"],["dc.relation.workinggroup","RG Möbius"],["dc.rights","CC BY-NC-ND 4.0"],["dc.rights.uri","https://www.elsevier.com/tdm/userlicense/1.0/"],["dc.title","Pathology of myelinated axons in the PLP-deficient mouse model of spastic paraplegia type 2 revealed by volume imaging using focused ion beam-scanning electron microscopy"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2018Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","6586"],["dc.bibliographiccitation.issue","29"],["dc.bibliographiccitation.journal","The Journal of Neuroscience"],["dc.bibliographiccitation.lastpage","6596"],["dc.bibliographiccitation.volume","38"],["dc.contributor.author","Weil, Marie-Theres"],["dc.contributor.author","Heibeck, Saskia"],["dc.contributor.author","Töpperwien, Mareike"],["dc.contributor.author","tom Dieck, Susanne"],["dc.contributor.author","Ruhwedel, Torben"],["dc.contributor.author","Salditt, Tim"],["dc.contributor.author","Rodicio, María C."],["dc.contributor.author","Morgan, Jennifer R."],["dc.contributor.author","Nave, Klaus-Armin"],["dc.contributor.author","Möbius, Wiebke"],["dc.contributor.author","Werner, Hauke B."],["dc.date.accessioned","2020-12-10T18:42:35Z"],["dc.date.available","2020-12-10T18:42:35Z"],["dc.date.issued","2018"],["dc.description.abstract","In the nervous system, myelination of axons enables rapid impulse conduction and is a specialized function of glial cells. Myelinating glia are the last cell type to emerge in the evolution of vertebrate nervous systems, presumably in ancient jawed vertebrates (gnathostomata) because jawless vertebrates (agnathans) lack myelin. We have hypothesized that, in these unmyelinated species, evolutionary progenitors of myelinating cells must have existed that should still be present in contemporary agnathan species. Here, we used advanced electron microscopic techniques to reveal axon-glia interactions in the sea lamprey Petromyzon marinus By quantitative assessment of the spinal cord and the peripheral lateral line nerve, we observed a marked maturation-dependent growth of axonal calibers. In peripheral nerves, all axons are ensheathed by glial cells either in bundles or, when larger than the threshold caliber of 3 μm, individually. The ensheathing glia are covered by a basal lamina and express SoxE-transcription factors, features of mammalian Remak-type Schwann cells. In larval lamprey, the ensheathment of peripheral axons leaves gaps that are closed in adults. CNS axons are also covered to a considerable extent by glial processes, which contain a high density of intermediate filaments, glycogen particles, large lipid droplets, and desmosomes, similar to mammalian astrocytes. Indeed, by in situ hybridization, these glial cells express the astrocyte marker Aldh1l1 Specimens were of unknown sex. Our observations imply that radial sorting, ensheathment, and presumably also metabolic support of axons are ancient functions of glial cells that predate the evolutionary emergence of myelin in jawed vertebrates.SIGNIFICANCE STATEMENT We used current electron microscopy techniques to examine axon-glia units in a nonmyelinated vertebrate species, the sea lamprey. In the PNS, lamprey axons are fully ensheathed either individually or in bundles by cells ortholog to Schwann cells. In the CNS, axons associate with astrocyte orthologs, which contain glycogen and lipid droplets. We suggest that ensheathment, radial sorting, and metabolic support of axons by glial cells predate the evolutionary emergence of myelin in ancient jawed vertebrates."],["dc.identifier.doi","10.1523/JNEUROSCI.1034-18.2018"],["dc.identifier.eissn","1529-2401"],["dc.identifier.issn","0270-6474"],["dc.identifier.pmid","29941446"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/78012"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation.eissn","1529-2401"],["dc.relation.issn","0270-6474"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.subject.gro","biomedical tomography"],["dc.title","Axonal Ensheathment in the Nervous System of Lamprey: Implications for the Evolution of Myelinating Glia"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2014Journal Article
    [["dc.bibliographiccitation.artnumber","5472"],["dc.bibliographiccitation.journal","Nature communications"],["dc.bibliographiccitation.volume","5"],["dc.contributor.author","Gritsch, Simon"],["dc.contributor.author","Lu, Jianning"],["dc.contributor.author","Thilemann, Sebastian"],["dc.contributor.author","Wörtge, Simone"],["dc.contributor.author","Möbius, Wiebke"],["dc.contributor.author","Bruttger, Julia"],["dc.contributor.author","Karram, Khalad"],["dc.contributor.author","Ruhwedel, Torben"],["dc.contributor.author","Blanfeld, Michaela"],["dc.contributor.author","Vardeh, Daniel"],["dc.contributor.author","Waisman, Ari"],["dc.contributor.author","Nave, Klaus-Armin"],["dc.contributor.author","Kuner, Rohini"],["dc.date.accessioned","2019-07-09T11:41:00Z"],["dc.date.available","2019-07-09T11:41:00Z"],["dc.date.issued","2014"],["dc.description.abstract","Mechanisms underlying central neuropathic pain are poorly understood. Although glial dysfunction has been functionally linked with neuropathic pain, very little is known about modulation of pain by oligodendrocytes. Here we report that genetic ablation of oligodendrocytes rapidly triggers a pattern of sensory changes that closely resemble central neuropathic pain, which are manifest before overt demyelination. Primary oligodendrocyte loss is not associated with autoreactive T- and B-cell infiltration in the spinal cord and neither activation of microglia nor reactive astrogliosis contribute functionally to central pain evoked by ablation of oligodendrocytes. Instead, light and electron microscopic analyses reveal axonal pathology in the spinal dorsal horn and spinothalamic tract concurrent with the induction and maintenance of nociceptive hypersensitivity. These data reveal a role for oligodendrocytes in modulating pain and suggest that perturbation of oligodendrocyte functions that maintain axonal integrity can lead to central neuropathic pain independent of immune contributions."],["dc.identifier.doi","10.1038/ncomms6472"],["dc.identifier.pmid","25434649"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/11560"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/58331"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/294293/EU//PAIN PLASTICITY"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/269020/EU//AXOGLIA"],["dc.relation.euproject","PAIN PLASTICITY"],["dc.relation.euproject","AXOGLIA"],["dc.relation.issn","2041-1723"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Oligodendrocyte ablation triggers central pain independently of innate or adaptive immune responses in mice."],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2017Journal Article
    [["dc.bibliographiccitation.artnumber","14241"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Berghoff, Stefan A."],["dc.contributor.author","Gerndt, Nina"],["dc.contributor.author","Winchenbach, Jan"],["dc.contributor.author","Stumpf, Sina Kristin"],["dc.contributor.author","Hosang, Leon"],["dc.contributor.author","Odoardi, Francesca"],["dc.contributor.author","Ruhwedel, Torben"],["dc.contributor.author","Boehler, Carolin"],["dc.contributor.author","Barrette, Benoit"],["dc.contributor.author","Stassart, Ruth"],["dc.contributor.author","Liebetanz, David"],["dc.contributor.author","Dibaj, Payam"],["dc.contributor.author","Möbius, Wiebke"],["dc.contributor.author","Edgar, Julia M."],["dc.contributor.author","Saher, Gesine"],["dc.date.accessioned","2018-11-07T10:28:16Z"],["dc.date.available","2018-11-07T10:28:16Z"],["dc.date.issued","2017"],["dc.description.abstract","Multiple Sclerosis (MS) is an inflammatory demyelinating disorder in which remyelination failure contributes to persistent disability. Cholesterol is rate-limiting for myelin biogenesis in the developing CNS; however, whether cholesterol insufficiency contributes to remyelination failure in MS, is unclear. Here, we show the relationship between cholesterol, myelination and neurological parameters in mouse models of demyelination and remyelination. In the cuprizone model, acute disease reduces serum cholesterol levels that can be restored by dietary cholesterol. Concomitant with blood-brain barrier impairment, supplemented cholesterol directly supports oligodendrocyte precursor proliferation and differentiation, and restores the balance of growth factors, creating a permissive environment for repair. This leads to attenuated axon damage, enhanced remyelination and improved motor learning. Remarkably, in experimental autoimmune encephalomyelitis, cholesterol supplementation does not exacerbate disease expression. These findings emphasize the safety of dietary cholesterol in inflammatory diseases and point to a previously unrecognized role of cholesterol in promoting repair after demyelinating episodes."],["dc.description.sponsorship","Deutsche Forschungsgemeinschaft [SA 2014/2-1]; ERC Advanced grant"],["dc.identifier.doi","10.1038/ncomms14241"],["dc.identifier.isi","000392582700001"],["dc.identifier.pmid","28117328"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14258"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/43386"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Nature Publishing Group"],["dc.relation.issn","2041-1723"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Dietary cholesterol promotes repair of demyelinated lesions in the adult brain"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2013Journal Article
    [["dc.bibliographiccitation.firstpage","355"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Journal of Structural Biology"],["dc.bibliographiccitation.lastpage","360"],["dc.bibliographiccitation.volume","184"],["dc.contributor.author","Schertel, Andreas"],["dc.contributor.author","Snaidero, Nicolas"],["dc.contributor.author","Han, Hong-Mei"],["dc.contributor.author","Ruhwedel, Torben"],["dc.contributor.author","Laue, Michael"],["dc.contributor.author","Grabenbauer, Markus"],["dc.contributor.author","Möbius, Wiebke"],["dc.date.accessioned","2022-03-01T11:45:15Z"],["dc.date.available","2022-03-01T11:45:15Z"],["dc.date.issued","2013"],["dc.identifier.doi","10.1016/j.jsb.2013.09.024"],["dc.identifier.pii","S1047847713002657"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/103266"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-531"],["dc.relation.issn","1047-8477"],["dc.rights.uri","https://www.elsevier.com/tdm/userlicense/1.0/"],["dc.title","Cryo FIB-SEM: Volume imaging of cellular ultrastructure in native frozen specimens"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI