Options
Zhu, Chenchang
Loading...
Preferred name
Zhu, Chenchang
Official Name
Zhu, Chenchang
Alternative Name
Zhu, C.
Main Affiliation
Now showing 1 - 10 of 30
2009Journal Article [["dc.bibliographiccitation.firstpage","4087"],["dc.bibliographiccitation.issue","21"],["dc.bibliographiccitation.journal","International Mathematics Research Notices. IMRN"],["dc.bibliographiccitation.lastpage","4141"],["dc.contributor.author","Zhu, Chenchang"],["dc.date.accessioned","2017-09-07T11:54:03Z"],["dc.date.available","2017-09-07T11:54:03Z"],["dc.date.issued","2009"],["dc.identifier.doi","10.1093/imrn/rnp080"],["dc.identifier.gro","3146481"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4260"],["dc.notes.status","public"],["dc.notes.submitter","chake"],["dc.relation.issn","1073-7928"],["dc.title","n-Groupoids and Stacky Groupoids"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI2012Journal Article [["dc.bibliographiccitation.firstpage","469"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Journal of Geometric Mechanics"],["dc.bibliographiccitation.lastpage","485"],["dc.bibliographiccitation.volume","4"],["dc.contributor.author","Zambon, Marco"],["dc.contributor.author","Zhu, Chenchang"],["dc.date.accessioned","2017-09-07T11:54:03Z"],["dc.date.available","2017-09-07T11:54:03Z"],["dc.date.issued","2012"],["dc.identifier.gro","3146471"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4249"],["dc.notes.status","public"],["dc.relation.issn","1941-4889"],["dc.title","Distributions and quotients on degree 1 NQ-manifolds and Lie algebroids"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details2009Book Chapter [["dc.bibliographiccitation.firstpage","161"],["dc.bibliographiccitation.lastpage","168"],["dc.contributor.author","Zhu, Chenchang"],["dc.contributor.editor","Kersten, Ina"],["dc.contributor.editor","Meyer, Ralf"],["dc.date.accessioned","2017-09-07T11:54:03Z"],["dc.date.available","2017-09-07T11:54:03Z"],["dc.date.issued","2009"],["dc.identifier.gro","3146479"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4258"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.publisher","Universitätsverlag Göttingen"],["dc.publisher.place","Göttingen"],["dc.relation.doi","10.17875/gup2009-63"],["dc.relation.isbn","978-3-940344-96-0"],["dc.relation.ispartof","Symmetries in algebra and number theory (SANT) Proceedings of the Göttingen-Jerusalem conference held October 27-30, 2008 in Göttingen"],["dc.title","Elliptic gamma function provides the Čech cocycle of a gerbe"],["dc.type","book_chapter"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details2018Journal Article [["dc.bibliographiccitation.firstpage","5055"],["dc.bibliographiccitation.issue","16"],["dc.bibliographiccitation.journal","International Mathematics Research Notices"],["dc.bibliographiccitation.lastpage","5125"],["dc.bibliographiccitation.volume","2020"],["dc.contributor.author","Bursztyn, Henrique"],["dc.contributor.author","Noseda, Francesco"],["dc.contributor.author","Zhu, Chenchang"],["dc.date.accessioned","2021-04-14T08:24:14Z"],["dc.date.available","2021-04-14T08:24:14Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1093/imrn/rny142"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/81216"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation.eissn","1687-0247"],["dc.relation.issn","1073-7928"],["dc.title","Principal Actions of Stacky Lie Groupoids"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2017Journal Article [["dc.bibliographiccitation.firstpage","757"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Letters in Mathematical Physics"],["dc.bibliographiccitation.lastpage","778"],["dc.bibliographiccitation.volume","108"],["dc.contributor.author","Alekseev, Anton"],["dc.contributor.author","Naef, Florian"],["dc.contributor.author","Xu, Xiaomeng"],["dc.contributor.author","Zhu, Chenchang"],["dc.date.accessioned","2020-12-10T14:11:43Z"],["dc.date.available","2020-12-10T14:11:43Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1007/s11005-017-0985-4"],["dc.identifier.eissn","1573-0530"],["dc.identifier.issn","0377-9017"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/71175"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Chern–Simons, Wess–Zumino and other cocycles from Kashiwara–Vergne and associators"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2021Journal Article [["dc.bibliographiccitation.journal","Communications in Mathematical Physics"],["dc.contributor.author","Sheng, Yunhe"],["dc.contributor.author","Tang, Rong"],["dc.contributor.author","Zhu, Chenchang"],["dc.date.accessioned","2021-06-01T09:42:48Z"],["dc.date.available","2021-06-01T09:42:48Z"],["dc.date.issued","2021"],["dc.description.abstract","Abstract In this paper, we first construct the controlling algebras of embedding tensors and Lie–Leibniz triples, which turn out to be a graded Lie algebra and an \\infty $ L ∞ -algebra respectively. Then we introduce representations and cohomologies of embedding tensors and Lie–Leibniz triples, and show that there is a long exact sequence connecting various cohomologies. As applications, we classify infinitesimal deformations and central extensions using the second cohomology groups. Finally, we introduce the notion of a homotopy embedding tensor which will induce a Leibniz -e\\infty $ ∞ -algebra. We realize Kotov and Strobl’s construction of an \\infty $ L ∞ -algebra from an embedding tensor, as a functor from the category of homotopy embedding tensors to that of Leibniz -e\\infty $ ∞ -algebras, and a functor further to that of \\infty $ L ∞ -algebras."],["dc.identifier.doi","10.1007/s00220-021-04032-y"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/85360"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.relation.eissn","1432-0916"],["dc.relation.issn","0010-3616"],["dc.title","The Controlling \\infty hBAlgebra, Cohomology and Homotopy of Embedding Tensors and Lie–Leibniz Triples"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2016Journal Article [["dc.bibliographiccitation.firstpage","1273"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Journal of the European Mathematical Society"],["dc.bibliographiccitation.lastpage","1320"],["dc.bibliographiccitation.volume","18"],["dc.contributor.author","Wockel, Christoph"],["dc.contributor.author","Zhu, Chenchang"],["dc.date.accessioned","2020-12-10T18:47:45Z"],["dc.date.available","2020-12-10T18:47:45Z"],["dc.date.issued","2016"],["dc.description.abstract","The purpose of this paper is to show how central extensions of (possibly infinite-dimensional) Lie algebras integrate to central extensions of étale Lie 2-groups in the sense of [Get09, Hen08]. In finite dimensions, central extensions of Lie algebras integrate to central extensions of Lie groups, a fact which is due to the vanishing of π 2 for each finite-dimensional Lie group. This fact was used by Cartan (in a slightly other guise) to construct the simply connected Lie group associated to each finite-dimensional Lie algebra. In infinite dimensions, there is an obstruction for a central extension of Lie algebras to integrate to a central extension of Lie groups. This obstruction comes from non-trivial π2 2 for general Lie groups. We show that this obstruction may be overcome by integrating central extensions of Lie algebras not to Lie groups but to central extensions of étale Lie 2-groups. As an application, we obtain a generalization of Lie’s Third Theorem to infinite-dimensional Lie algebras."],["dc.identifier.doi","10.4171/JEMS/613"],["dc.identifier.gro","3146465"],["dc.identifier.issn","1435-9855"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/78876"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.status","final"],["dc.relation.issn","1435-9855"],["dc.title","Integrating central extensions of Lie algebras via Lie 2-groups"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI2006Journal Article [["dc.bibliographiccitation.firstpage","1365"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Transactions of the American Mathematical Society"],["dc.bibliographiccitation.lastpage","1401"],["dc.bibliographiccitation.volume","358"],["dc.contributor.author","Zambon, Marco"],["dc.contributor.author","Zhu, Chenchang"],["dc.date.accessioned","2017-09-07T11:54:04Z"],["dc.date.available","2017-09-07T11:54:04Z"],["dc.date.issued","2006"],["dc.identifier.doi","10.1090/S0002-9947-05-03832-8"],["dc.identifier.gro","3146488"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4268"],["dc.notes.status","public"],["dc.relation.issn","0002-9947"],["dc.title","Contact reduction and groupoid actions"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI2013Journal Article [["dc.bibliographiccitation.firstpage","149"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Communications in Mathematical Physics"],["dc.bibliographiccitation.lastpage","172"],["dc.bibliographiccitation.volume","320"],["dc.contributor.author","Bai, Chengming"],["dc.contributor.author","Sheng, Yunhe"],["dc.contributor.author","Zhu, Chenchang"],["dc.date.accessioned","2017-09-07T11:54:02Z"],["dc.date.available","2017-09-07T11:54:02Z"],["dc.date.issued","2013"],["dc.identifier.doi","10.1007/s00220-013-1712-3"],["dc.identifier.gro","3146469"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4247"],["dc.notes.status","public"],["dc.relation.issn","0010-3616"],["dc.title","Lie 2-bialgebras"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI2015Journal Article [["dc.bibliographiccitation.firstpage","1906"],["dc.bibliographiccitation.journal","Theory and Applications of Categories"],["dc.bibliographiccitation.lastpage","1998"],["dc.bibliographiccitation.volume","30"],["dc.contributor.author","Zhu, Chenchang"],["dc.contributor.author","Meyer, Ralf"],["dc.date.accessioned","2018-11-07T10:02:25Z"],["dc.date.available","2018-11-07T10:02:25Z"],["dc.date.issued","2015"],["dc.description.abstract","We survey the general theory of groupoids, groupoid actions, groupoid principal bundles, and various kinds of morphisms between groupoids in the framework of categories with pretopology. The categories of topological spaces and finite or infinite dimensional manifolds are examples of such categories. We study extra assumptions on pretopologies that are needed for this theory. We check these extra assumptions in several categories with pretopologies. Functors between groupoids may be localised at equivalences in two ways. One uses spans of functors, the other bibundles (commuting actions) of groupoids. We show that both approaches give equivalent bicategories. Another type of groupoid morphism, called an actor, is closely related to functors between the categories of groupoid actions. We also generalise actors using bibundles, and show that this gives another bicategory of groupoids."],["dc.identifier.gro","3146467"],["dc.identifier.isi","000379221800001"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/38220"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Mount Allison Univ"],["dc.relation.issn","1201-561X"],["dc.title","Groupoids in categories with pretopology"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details WOS
- «
- 1 (current)
- 2
- 3
- »