Now showing 1 - 10 of 10
  • 2014Journal Article
    [["dc.bibliographiccitation.artnumber","27"],["dc.bibliographiccitation.journal","Frontiers in synaptic neuroscience"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Shinoda, Yo"],["dc.contributor.author","Ahmed, Saheeb"],["dc.contributor.author","Ramachandran, Binu"],["dc.contributor.author","Bharat, Vinita"],["dc.contributor.author","Brockelt, David"],["dc.contributor.author","Altas, Bekir"],["dc.contributor.author","Dean, Camin"],["dc.date.accessioned","2019-07-09T11:41:08Z"],["dc.date.available","2019-07-09T11:41:08Z"],["dc.date.issued","2014"],["dc.description.abstract","Brain-derived neurotrophic factor (BDNF) is widely reported to enhance synaptic vesicle (SV) exocytosis and neurotransmitter release. But it is still unclear whether BDNF enhances SV recycling at excitatory terminals only, or at both excitatory and inhibitory terminals. In the present study, in a direct comparison using cultured rat hippocampal neurons, we demonstrate that BDNF enhances both spontaneous and activity-dependent neurotransmitter release from excitatory terminals, but not from inhibitory terminals. BDNF treatment for 5 min or 48 h increased both spontaneous and activity-induced anti-synaptotagmin1 (SYT1) antibody uptake at excitatory terminals marked with vGluT1. Conversely, BDNF treatment did not enhance spontaneous or activity-induced uptake of anti-SYT1 antibodies in inhibitory terminals marked with vGAT. Time-lapse imaging of FM1-43 dye destaining in excitatory and inhibitory terminals visualized by post-hoc immunostaining of vGluT1 and vGAT also showed the same result: The rate of spontaneous and activity-induced destaining was increased by BDNF at excitatory synapses, but not at inhibitory synapses. These data demonstrate that BDNF enhances SV exocytosis in excitatory but not inhibitory terminals. Moreover, BDNF enhanced evoked SV exocytosis, even if vesicles were loaded under spontaneous vesicle recycling conditions. Thus, BDNF enhances both spontaneous and activity-dependent neurotransmitter release on both short and long time-scales, by the same mechanism."],["dc.identifier.doi","10.3389/fnsyn.2014.00027"],["dc.identifier.fs","607146"],["dc.identifier.pmid","25426063"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/11694"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/58356"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/260916/EU//SYT"],["dc.relation.euproject","SytActivity"],["dc.relation.issn","1663-3563"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","BDNF enhances spontaneous and activity-dependent neurotransmitter release at excitatory terminals but not at inhibitory terminals in hippocampal neurons."],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2015Journal Article
    [["dc.bibliographiccitation.firstpage","106"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Hippocampus"],["dc.bibliographiccitation.lastpage","118"],["dc.bibliographiccitation.volume","25"],["dc.contributor.author","Ramachandran, Binu"],["dc.contributor.author","Ahmed, Saheeb"],["dc.contributor.author","Zafar, Noman"],["dc.contributor.author","Dean, Camin"],["dc.date.accessioned","2018-11-07T10:04:08Z"],["dc.date.available","2018-11-07T10:04:08Z"],["dc.date.issued","2015"],["dc.description.abstract","Ethanol inhibits memory encoding and the induction of long-term potentiation (LTP) in CA1 neurons of the hippocampus. Hippocampal LTP at Schaffer collateral synapses onto CA1 pyramidal neurons has been widely studied as a cellular model of learning and memory, but there is striking heterogeneity in the underlying molecular mechanisms in distinct regions and in response to distinct stimuli. Basal and apical dendrites differ in terms of innervation, input specificity, and molecular mechanisms of LTP induction and maintenance, and different stimuli determine distinct molecular pathways of potentiation. However, lamina or stimulus-dependent effects of ethanol on LTP have not been investigated. Here, we tested the effect of acute application of 60 mM ethanol on LTP induction in distinct dendritic compartments (apical versus basal) of CA1 neurons, and in response to distinct stimulation paradigms (single versus repeated, spaced high frequency stimulation). We found that ethanol completely blocks LTP in apical dendrites, whereas it reduces the magnitude of LTP in basal dendrites. Acute ethanol treatment for just 15 min altered pre- and post-synaptic protein expression. Interestingly, ethanol increases the neurosteroid allopregnanolone, which causes ethanol-dependent inhibition of LTP, more prominently in apical dendrites, where ethanol has greater effects on LTP. This suggests that ethanol has general effects on fundamental properties of synaptic plasticity, but the magnitude of its effect on LTP differs depending on hippocampal sub-region and stimulus strength. (c) 2014 Wiley Periodicals, Inc."],["dc.identifier.doi","10.1002/hipo.22356"],["dc.identifier.isi","000346255600010"],["dc.identifier.pmid","25155179"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/38630"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.relation.issn","1098-1063"],["dc.relation.issn","1050-9631"],["dc.title","Ethanol Inhibits Long-Term Potentiation in Hippocampal CA1 Neurons, Irrespective of Lamina and Stimulus Strength, Through Neurosteroidogenesis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2019Journal Article
    [["dc.bibliographiccitation.artnumber","eaav1483"],["dc.bibliographiccitation.issue","6422"],["dc.bibliographiccitation.journal","Science (New York, N.Y.)"],["dc.bibliographiccitation.volume","363"],["dc.contributor.author","Awasthi, Ankit"],["dc.contributor.author","Ramachandran, Binu"],["dc.contributor.author","Ahmed, Saheeb"],["dc.contributor.author","Benito, Eva"],["dc.contributor.author","Shinoda, Yo"],["dc.contributor.author","Nitzan, Noam"],["dc.contributor.author","Heukamp, Alina"],["dc.contributor.author","Rannio, Sabine"],["dc.contributor.author","Martens, Henrik"],["dc.contributor.author","Barth, Jonas"],["dc.contributor.author","Burk, Katja"],["dc.contributor.author","Wang, Yu Tian"],["dc.contributor.author","Fischer, André"],["dc.contributor.author","Dean, Camin"],["dc.date.accessioned","2019-07-31T13:02:46Z"],["dc.date.available","2019-07-31T13:02:46Z"],["dc.date.issued","2019"],["dc.description.abstract","Forgetting is important. Without it, the relative importance of acquired memories in a changing environment is lost. We discovered that synaptotagmin-3 (Syt3) localizes to postsynaptic endocytic zones and removes AMPA receptors from synaptic plasma membranes in response to stimulation. AMPA receptor internalization, long-term depression (LTD), and decay of long-term potentiation (LTP) of synaptic strength required calcium-sensing by Syt3 and were abolished through Syt3 knockout. In spatial memory tasks, mice in which Syt3 was knocked out learned normally but exhibited a lack of forgetting. Disrupting Syt3:GluA2 binding in a wild-type background mimicked the lack of LTP decay and lack of forgetting, and these effects were occluded in the Syt3 knockout background. Our findings provide evidence for a molecular mechanism in which Syt3 internalizes AMPA receptors to depress synaptic strength and promote forgetting."],["dc.identifier.doi","10.1126/science.aav1483"],["dc.identifier.pmid","30545844"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/62245"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation.eissn","1095-9203"],["dc.relation.issn","0036-8075"],["dc.relation.issn","1095-9203"],["dc.title","Synaptotagmin-3 drives AMPA receptor endocytosis, depression of synapse strength, and forgetting"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2013Journal Article
    [["dc.bibliographiccitation.firstpage","e63474"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","PLOS ONE"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Ahmed, Saheeb"],["dc.contributor.author","Wittenmayer, Nina"],["dc.contributor.author","Kremer, Thomas"],["dc.contributor.author","Hoeber, Jan"],["dc.contributor.author","Kiran Akula, Asha"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Islinger, Markus"],["dc.contributor.author","Kirsch, Joachim"],["dc.contributor.author","Dean, Camin"],["dc.contributor.author","Dresbach, Thomas"],["dc.contributor.editor","Dunaevsky, Anna"],["dc.date.accessioned","2018-09-28T09:31:14Z"],["dc.date.available","2018-09-28T09:31:14Z"],["dc.date.issued","2013"],["dc.description.abstract","With remarkably few exceptions, the molecules mediating synaptic vesicle exocytosis at active zones are structurally and functionally conserved between vertebrates and invertebrates. Mover was found in a yeast-2-hybrid assay using the vertebrate-specific active zone scaffolding protein bassoon as a bait. Peptides of Mover have been reported in proteomics screens for self-interacting proteins, phosphorylated proteins, and synaptic vesicle proteins, respectively. Here, we tested the predictions arising from these screens. Using flotation assays, carbonate stripping of peripheral membrane proteins, mass spectrometry, immunogold labelling of purified synaptic vesicles, and immuno-organelle isolation, we found that Mover is indeed a peripheral synaptic vesicle membrane protein. In addition, by generating an antibody against phosphorylated Mover and Western blot analysis of fractionated rat brain, we found that Mover is a bona fide phospho-protein. The localization of Mover to synaptic vesicles is phosphorylation dependent; treatment with a phosphatase caused Mover to dissociate from synaptic vesicles. A yeast-2-hybrid screen, co-immunoprecipitation and cell-based optical assays of homomerization revealed that Mover undergoes homophilic interaction, and regions within both the N- and C- terminus of the protein are required for this interaction. Deleting a region required for homomeric interaction abolished presynaptic targeting of recombinant Mover in cultured neurons. Together, these data prove that Mover is associated with synaptic vesicles, and implicate phosphorylation and multimerization in targeting of Mover to synaptic vesicles and presynaptic sites."],["dc.identifier.doi","10.1371/journal.pone.0063474"],["dc.identifier.pmid","23723986"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/9347"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/15843"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.relation.eissn","1932-6203"],["dc.rights","CC BY 2.5"],["dc.rights.uri","https://creativecommons.org/licenses/by/2.5"],["dc.title","Mover is a homomeric phospho-protein present on synaptic vesicles"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2017-11-21Journal Article
    [["dc.bibliographiccitation.firstpage","2118"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Cell reports"],["dc.bibliographiccitation.lastpage","2133"],["dc.bibliographiccitation.volume","21"],["dc.contributor.author","Bharat, Vinita"],["dc.contributor.author","Siebrecht, Michael"],["dc.contributor.author","Burk, Katja"],["dc.contributor.author","Ahmed, Saheeb"],["dc.contributor.author","Reissner, Carsten"],["dc.contributor.author","Kohansal-Nodehi, Mahdokht"],["dc.contributor.author","Steubler, Vicky"],["dc.contributor.author","Zweckstetter, Markus"],["dc.contributor.author","Ting, Jonathan T"],["dc.contributor.author","Dean, Camin"],["dc.date.accessioned","2019-07-09T11:44:43Z"],["dc.date.available","2019-07-09T11:44:43Z"],["dc.date.issued","2017-11-21"],["dc.description.abstract","Delivery of neurotrophins and neuropeptides via long-range trafficking of dense core vesicles (DCVs) from the cell soma to nerve terminals is essential for synapse modulation and circuit function. But the mechanism by which transiting DCVs are captured at specific sites is unknown. Here, we discovered that Synaptotagmin-4 (Syt4) regulates the capture and spatial distribution of DCVs in hippocampal neurons. We found that DCVs are highly mobile and undergo long-range translocation but switch directions only at the distal ends of axons, revealing a circular trafficking pattern. Phosphorylation of serine 135 of Syt4 by JNK steers DCV trafficking by destabilizing Syt4-Kif1A interaction, leading to a transition from microtubule-dependent DCV trafficking to capture at en passant presynaptic boutons by actin. Furthermore, neuronal activity increased DCV capture via JNK-dependent phosphorylation of the S135 site of Syt4. Our data reveal a mechanism that ensures rapid, site-specific delivery of DCVs to synapses."],["dc.identifier.doi","10.1016/j.celrep.2017.10.084"],["dc.identifier.pmid","29166604"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14878"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59077"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/260916/EU//SYT ACTIVITY"],["dc.relation.issn","2211-1247"],["dc.rights","CC BY-NC-ND 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-nd/4.0"],["dc.subject.ddc","612"],["dc.title","Capture of Dense Core Vesicles at Synapses by JNK-Dependent Phosphorylation of Synaptotagmin-4."],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2017Journal Article
    [["dc.bibliographiccitation.artnumber","15878"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Hurtado-Zavala, Joaquin I."],["dc.contributor.author","Ramachandran, Binu"],["dc.contributor.author","Ahmed, Saheeb"],["dc.contributor.author","Halder, Rashi"],["dc.contributor.author","Bolleyer, Christiane"],["dc.contributor.author","Awasthi, Ankit"],["dc.contributor.author","Stahlberg, Markus A."],["dc.contributor.author","Wagener, Robin J."],["dc.contributor.author","Anderson, Kristin"],["dc.contributor.author","Drenan, Ryan M."],["dc.contributor.author","Lester, Henry A."],["dc.contributor.author","Miwa, Julie M."],["dc.contributor.author","Staiger, Jochen F."],["dc.contributor.author","Fischer, Andre"],["dc.contributor.author","Dean, Camin"],["dc.date.accessioned","2018-04-23T11:47:16Z"],["dc.date.available","2018-04-23T11:47:16Z"],["dc.date.issued","2017"],["dc.description.abstract","TRPV1 is an ion channel activated by heat and pungent agents including capsaicin, and has been extensively studied in nociception of sensory neurons. However, the location and function of TRPV1 in the hippocampus is debated. We found that TRPV1 is expressed in oriens-lacunosum-moleculare (OLM) interneurons in the hippocampus, and promotes excitatory innervation. TRPV1 knockout mice have reduced glutamatergic innervation of OLM neurons. When activated by capsaicin, TRPV1 recruits more glutamatergic, but not GABAergic, terminals to OLM neurons in vitro. When TRPV1 is blocked, glutamatergic input to OLM neurons is dramatically reduced. Heterologous expression of TRPV1 also increases excitatory innervation. Moreover, TRPV1 knockouts have reduced Schaffer collateral LTP, which is rescued by activating OLM neurons with nicotine—via α2β2-containing nicotinic receptors—to bypass innervation defects. Our results reveal a synaptogenic function of TRPV1 in a specific interneuron population in the hippocampus, where it is important for gating hippocampal plasticity."],["dc.identifier.doi","10.1038/ncomms15878"],["dc.identifier.gro","3142196"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14910"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13316"],["dc.language.iso","en"],["dc.notes.intern","lifescience updates Crossref Import"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation.issn","2041-1723"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","TRPV1 regulates excitatory innervation of OLM neurons in the hippocampus"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2015Journal Article
    [["dc.bibliographiccitation.artnumber","23"],["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.journal","Frontiers in Cellular Neuroscience"],["dc.bibliographiccitation.lastpage","10"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Ramachandran, Binu"],["dc.contributor.author","Ahmed, Saheeb"],["dc.contributor.author","Dean, Camin"],["dc.date.accessioned","2019-07-09T11:41:03Z"],["dc.date.available","2019-07-09T11:41:03Z"],["dc.date.issued","2015"],["dc.description.abstract","Information storage in CA1 hippocampal pyramidal neurons is compartmentalized in proximal vs. distal apical dendrites, cell bodies, and basal dendrites. This compartmentalization is thought to be essential for synaptic integration. Differences in the expression of long-term potentiation (LTP) in each of these compartments have been described, but less is known regarding potential differences in long-term depression (LTD). Here, to directly compare LTD expression in each compartment and to bypass possible differences in input-specificity and stimulation of presynaptic inputs, we used global application of NMDA to induce LTD. We then examined LTD expression in each dendritic sub-region—proximal and distal apical, and basal dendrites—and in cell bodies. Interestingly, we found that distal apical dendrites exhibited the greatest magnitude of LTD of all areas tested and this LTD was maintained, whereas LTD in proximal apical dendrites was not maintained. In basal dendrites, LTD was also maintained, but the magnitude of LTD was less than in distal apical dendrites. Blockade of inhibition blocked LTD maintenance in both distal apical and basal dendrites. Population spikes recorded from the cell body layer correlated with apical dendrite field EPSP (fEPSP), where LTD was maintained in distal dendrites and decayed in proximal dendrites. On the other hand, LTD of basal dendrite fEPSPs was maintained but population spike responses were not. Thus E-S coupling was distinct in basal and apical dendrites. Our data demonstrate cell autonomous differential information processing in somas and dendritic sub-regions of CA1 pyramidal neurons in the hippocampus, where LTD expression is intrinsic to distinct dendritic regions, and does not depend on the nature of stimulation and input specificity."],["dc.identifier.doi","10.3389/fncel.2015.00023"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/11660"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/58351"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/260916/EU//SYT"],["dc.relation.euproject","SytActivity"],["dc.relation.issn","1662-5102"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Long-term depression is differentially expressed in distinct lamina of hippocampal CA1 dendrites"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2017Journal Article
    [["dc.bibliographiccitation.firstpage","149"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","The Journal of general physiology"],["dc.bibliographiccitation.lastpage","170"],["dc.bibliographiccitation.volume","149"],["dc.contributor.author","Wolfes, Anne C."],["dc.contributor.author","Ahmed, Saheeb"],["dc.contributor.author","Awasthi, Ankit"],["dc.contributor.author","Stahlberg, Markus A."],["dc.contributor.author","Rajput, Ashish"],["dc.contributor.author","Magruder, Daniel S."],["dc.contributor.author","Bonn, Stefan"],["dc.contributor.author","Dean, Camin"],["dc.date.accessioned","2019-07-09T11:43:25Z"],["dc.date.available","2019-07-09T11:43:25Z"],["dc.date.issued","2017"],["dc.description.abstract","Interactions between astrocytes and neurons rely on the release and uptake of glial and neuronal molecules. But whether astrocytic vesicles exist and exocytose in a regulated or constitutive fashion is under debate. The majority of studies have relied on indirect methods or on astrocyte cultures that do not resemble stellate astrocytes found in vivo. Here, to investigate vesicle-associated proteins and exocytosis in stellate astrocytes specifically, we developed a simple, fast, and economical method for growing stellate astrocyte monocultures. This method is superior to other monocultures in terms of astrocyte morphology, mRNA expression profile, protein expression of cell maturity markers, and Ca(2+) fluctuations: In astrocytes transduced with GFAP promoter-driven Lck-GCaMP3, spontaneous Ca(2+) events in distinct domains (somata, branchlets, and microdomains) are similar to those in astrocytes co-cultured with other glia and neurons but unlike Ca(2+) events in astrocytes prepared using the McCarthy and de Vellis (MD) method and immunopanned (IP) astrocytes. We identify two distinct populations of constitutively recycling vesicles (harboring either VAMP2 or SYT7) specifically in branchlets of cultured stellate astrocytes. SYT7 is developmentally regulated in these astrocytes, and we observe significantly fewer synapses in wild-type mouse neurons grown on Syt7(-/-) astrocytes. SYT7 may thus be involved in trafficking or releasing synaptogenic factors. In summary, our novel method yields stellate astrocyte monocultures that can be used to study Ca(2+) signaling and vesicle recycling and dynamics in astrocytic processes."],["dc.description.abstract","whether astrocytic vesicles exist and exocytose in a regulated or constitutive fashion is under debate. The majority of studies have relied on indirect methods or on astrocyte cultures that do not resemble stellate astrocytes found in vivo. Here, to investigate vesicle-associated proteins and exocytosis in stellate astrocytes specifically, we developed a simple, fast, and economical method for growing stellate astrocyte monocultures. This method is superior to other monocultures in terms of astrocyte morphology, mRNA expression profile, protein expression of cell maturity markers, and Ca2+ fluctuations: In astrocytes transduced with GFAP promoter–driven Lck-GCaMP3, spontaneous Ca2+ events in distinct domains (somata, branchlets, and microdomains) are similar to those in astrocytes co-cultured with other glia and neurons but unlike Ca2+ events in astrocytes prepared using the McCarthy and de Vellis (MD) method and immunopanned (IP) astrocytes. We identify two distinct populations of constitutively recycling vesicles (harboring either VAMP2 or SYT7) specifically in branchlets of cultured stellate astrocytes. SYT7 is developmentally regulated in these astrocytes, and we observe significantly fewer synapses in wild-type mouse neurons grown on Syt7−/− astrocytes. SYT7 may thus be involved in trafficking or releasing synaptogenic factors. In summary, our novel method yields stellate astrocyte monocultures that can be used to study Ca2+ signaling and vesicle recycling and dynamics in astrocytic processes."],["dc.identifier.doi","10.1085/jgp.201611607"],["dc.identifier.pmid","27908976"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14524"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/58885"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/260916/EU//SYT ACTIVITY"],["dc.relation.issn","1540-7748"],["dc.rights","CC BY-NC-SA 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-sa/3.0"],["dc.subject.ddc","612"],["dc.title","A novel method for culturing stellate astrocytes reveals spatially distinct Ca2+ signaling and vesicle recycling in astrocytic processes."],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2015Journal Article
    [["dc.bibliographiccitation.firstpage","521"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Neuron"],["dc.bibliographiccitation.lastpage","533"],["dc.bibliographiccitation.volume","87"],["dc.contributor.author","Körber, Christoph"],["dc.contributor.author","Horstmann, Heinz"],["dc.contributor.author","Venkataramani, Varun"],["dc.contributor.author","Herrmannsdörfer, Frank"],["dc.contributor.author","Kremer, Thomas"],["dc.contributor.author","Kaiser, Michaela"],["dc.contributor.author","Schwenger, Darius B."],["dc.contributor.author","Ahmed, Saheeb"],["dc.contributor.author","Dean, Camin"],["dc.contributor.author","Dresbach, Thomas"],["dc.contributor.author","Kuner, Thomas"],["dc.date.accessioned","2018-09-28T09:27:35Z"],["dc.date.available","2018-09-28T09:27:35Z"],["dc.date.issued","2015"],["dc.description.abstract","Mover, a member of the exquisitely small group of vertebrate-specific presynaptic proteins, has been discovered as an interaction partner of the scaffolding protein Bassoon, yet its function has not been elucidated. We used adeno-associated virus (AAV)-mediated shRNA expression to knock down Mover in the calyx of Held in vivo. Although spontaneous synaptic transmission remained unaffected, we found a strong increase of the evoked EPSC amplitude. The size of the readily releasable pool was unaltered, but short-term depression was accelerated and enhanced, consistent with an increase in release probability after Mover knockdown. This increase in release probability was not caused by alterations in Ca(2+) influx but rather by a higher Ca(2+) sensitivity of the release machinery, as demonstrated by presynaptic Ca(2+) uncaging. We therefore conclude that Mover expression in certain subsets of synapses negatively regulates synaptic release probability, constituting a novel mechanism to tune synaptic transmission."],["dc.identifier.doi","10.1016/j.neuron.2015.07.001"],["dc.identifier.pmid","26212709"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/15842"],["dc.language.iso","en"],["dc.notes.status","zu prüfen"],["dc.relation.eissn","1097-4199"],["dc.title","Modulation of Presynaptic Release Probability by the Vertebrate-Specific Protein Mover"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2017Journal Article
    [["dc.bibliographiccitation.firstpage","1087"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Cerebral Cortex"],["dc.bibliographiccitation.lastpage","1104"],["dc.bibliographiccitation.volume","28"],["dc.contributor.author","Burk, Katja"],["dc.contributor.author","Ramachandran, Binu"],["dc.contributor.author","Ahmed, Saheeb"],["dc.contributor.author","Hurtado-Zavala, Joaquin I"],["dc.contributor.author","Awasthi, Ankit"],["dc.contributor.author","Benito, Eva"],["dc.contributor.author","Faram, Ruth"],["dc.contributor.author","Ahmad, Hamid"],["dc.contributor.author","Swaminathan, Aarti"],["dc.contributor.author","McIlhinney, Jeffrey"],["dc.contributor.author","Fischer, Andre"],["dc.contributor.author","Perestenko, Pavel"],["dc.contributor.author","Dean, Camin"],["dc.date.accessioned","2018-01-09T14:34:30Z"],["dc.date.available","2018-01-09T14:34:30Z"],["dc.date.issued","2017"],["dc.description.abstract","Dendritic spines compartmentalize information in the brain, and their morphological characteristics are thought to underly synaptic plasticity. Here we identify copine-6 as a novel modulator of dendritic spine morphology. We found that brain-derived neurotrophic factor (BDNF) - a molecule essential for long-term potentiation of synaptic strength - upregulated and recruited copine-6 to dendritic spines in hippocampal neurons. Overexpression of copine-6 increased mushroom spine number and decreased filopodia number, while copine-6 knockdown had the opposite effect and dramatically increased the number of filopodia, which lacked PSD95. Functionally, manipulation of post-synaptic copine-6 levels affected miniature excitatory post-synaptic current (mEPSC) kinetics and evoked synaptic vesicle recycling in contacting boutons, and post-synaptic knockdown of copine-6 reduced hippocampal LTP and increased LTD. Mechanistically, copine-6 promotes BDNF-TrkB signaling and recycling of activated TrkB receptors back to the plasma membrane surface, and is necessary for BDNF-induced increases in mushroom spines in hippocampal neurons. Thus copine-6 regulates BDNF-dependent changes in dendritic spine morphology to promote synaptic plasticity."],["dc.identifier.doi","10.1093/cercor/bhx009"],["dc.identifier.pmid","28158493"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11602"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation.eissn","1460-2199"],["dc.title","Regulation of Dendritic Spine Morphology in Hippocampal Neurons by Copine-6"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC