Options
Magdon, Paul
Loading...
Preferred name
Magdon, Paul
Official Name
Magdon, Paul
Alternative Name
Magdon, P.
Main Affiliation
Now showing 1 - 10 of 38
2020Book Chapter [["dc.bibliographiccitation.firstpage","309"],["dc.bibliographiccitation.lastpage","348"],["dc.contributor.author","Lausch, Angela"],["dc.contributor.author","Heurich, Marco"],["dc.contributor.author","Magdon, Paul"],["dc.contributor.author","Rocchini, Duccio"],["dc.contributor.author","Schulz, Karsten"],["dc.contributor.author","Bumberger, Jan"],["dc.contributor.author","King, Doug J."],["dc.date.accessioned","2020-11-09T13:15:02Z"],["dc.date.available","2020-11-09T13:15:02Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1007/978-3-030-33157-3_13"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/68611"],["dc.relation.isbn","978-3-030-33156-6"],["dc.relation.isbn","978-3-030-33157-3"],["dc.relation.ispartof","Remote Sensing of Plant Biodiversity"],["dc.title","A Range of Earth Observation Techniques for Assessing Plant Diversity"],["dc.type","book_chapter"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI2010Conference Paper [["dc.contributor.author","Magdon, Paul"],["dc.contributor.author","Fuchs, H."],["dc.contributor.author","Fischer, C."],["dc.contributor.author","Kleinn, C."],["dc.date.accessioned","2020-11-09T13:15:38Z"],["dc.date.available","2020-11-09T13:15:38Z"],["dc.date.issued","2010"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/68619"],["dc.notes.preprint","yes"],["dc.relation.conference","3. RESA Nutzerworkshop"],["dc.relation.eventlocation","Neustrelitz"],["dc.relation.eventstart","2010"],["dc.relation.iserratumof","yes"],["dc.title","Forest cover monitroing using RapidEye: a case study in Costa Rica"],["dc.type","conference_paper"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details2014Journal Article [["dc.bibliographiccitation.firstpage","252"],["dc.bibliographiccitation.journal","Remote Sensing of Environment"],["dc.bibliographiccitation.lastpage","262"],["dc.bibliographiccitation.volume","149"],["dc.contributor.author","Magdon, Paul"],["dc.contributor.author","Fischer, Christoph"],["dc.contributor.author","Fuchs, Hans"],["dc.contributor.author","Kleinn, Christoph"],["dc.date.accessioned","2017-09-07T11:47:08Z"],["dc.date.available","2017-09-07T11:47:08Z"],["dc.date.issued","2014"],["dc.identifier.doi","10.1016/j.rse.2014.03.033"],["dc.identifier.gro","3149260"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/5917"],["dc.notes.intern","Kleinn Crossref Import"],["dc.notes.status","public"],["dc.notes.submitter","chake"],["dc.publisher","Elsevier BV"],["dc.relation.issn","0034-4257"],["dc.title","Translating criteria of international forest definitions into remote sensing image analysis"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI2021Journal Article [["dc.bibliographiccitation.firstpage","1041"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Remote Sensing"],["dc.bibliographiccitation.volume","13"],["dc.contributor.author","Pérez-Cruzado, César"],["dc.contributor.author","Kleinn, Christoph"],["dc.contributor.author","Magdon, Paul"],["dc.contributor.author","Álvarez-González, Juan Gabriel"],["dc.contributor.author","Magnussen, Steen"],["dc.contributor.author","Fehrmann, Lutz"],["dc.contributor.author","Nölke, Nils"],["dc.date.accessioned","2021-04-14T08:27:52Z"],["dc.date.available","2021-04-14T08:27:52Z"],["dc.date.issued","2021"],["dc.description.sponsorship","Forest Research Institute of the German Federal State of Rheinland-Pfalz (FAWF) in Trippstadt"],["dc.identifier.doi","10.3390/rs13051041"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/82431"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.publisher","MDPI"],["dc.relation.eissn","2072-4292"],["dc.rights","https://creativecommons.org/licenses/by/4.0/"],["dc.title","The Horizontal Distribution of Branch Biomass in European Beech: A Model Based on Measurements and TLS Based Proxies"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2019Journal Article [["dc.bibliographiccitation.firstpage","410"],["dc.bibliographiccitation.journal","Ecological Indicators"],["dc.bibliographiccitation.lastpage","425"],["dc.bibliographiccitation.volume","102"],["dc.contributor.author","Kukunda, Collins B."],["dc.contributor.author","Beckschäfer, Philip"],["dc.contributor.author","Magdon, Paul"],["dc.contributor.author","Schall, Peter"],["dc.contributor.author","Wirth, Christian"],["dc.contributor.author","Kleinn, Christoph"],["dc.date.accessioned","2020-11-05T14:56:53Z"],["dc.date.available","2020-11-05T14:56:53Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1016/j.ecolind.2019.02.056"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/68383"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-352.4"],["dc.relation.issn","1470-160X"],["dc.title","Scale-guided mapping of forest stand structural heterogeneity from airborne LiDAR"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI2012Journal Article [["dc.bibliographiccitation.firstpage","5345"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Environmental Monitoring and Assessment"],["dc.bibliographiccitation.lastpage","5360"],["dc.bibliographiccitation.volume","185"],["dc.contributor.author","Magdon, Paul"],["dc.contributor.author","Kleinn, Christoph"],["dc.date.accessioned","2017-09-07T11:47:11Z"],["dc.date.available","2017-09-07T11:47:11Z"],["dc.date.issued","2012"],["dc.description.abstract","Defining “forest land” is a complex issue and has been discussed for decades. Today, a confusing multitude of definitions of forest land are in use making comparison of forest area figures difficult. But currently, comparability is receiving much attention when it comes to install market mechanisms for ecosystem services. Minimum crown cover is among the most frequently employed criteria of forest definitions. However, the size of the reference area on which the crown cover percent is to be measured is usually not defined. But how does a change of the size of the reference area affect the derived forest cover? In this study, we analyze the interactions of the crown cover threshold and the size of the reference area. We start with analyzing the interactions using a simple geometric model of the forest edge. Then, we extend the analysis by simulating artificial landscapes where we study how the interaction is affected by different degrees of forest fragmentation, crown cover proportion, and spatial resolution of the data source used. The simulation showed that large differences in forest cover (>50 %) may result for a fixed crown cover threshold value, just by changing the size of the reference area, where the magnitude of this effect is a function of the chosen threshold value and the spatial configuration of the crowns. As a consequence of the findings, we see an urgent need to complete forest definitions by defining a reference area in order to reduce uncertainties of forest cover estimates."],["dc.identifier.doi","10.1007/s10661-012-2950-0"],["dc.identifier.gro","3149288"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/10348"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/5948"],["dc.language.iso","en"],["dc.notes.intern","Kleinn Crossref Import"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.relation.issn","0167-6369"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Uncertainties of forest area estimates caused by the minimum crown cover criterion"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2015Journal Article Research Paper [["dc.bibliographiccitation.firstpage","14"],["dc.bibliographiccitation.journal","Environmental Modelling & Software"],["dc.bibliographiccitation.lastpage","26"],["dc.bibliographiccitation.volume","73"],["dc.contributor.author","Pérez-Cruzado, César"],["dc.contributor.author","Fehrmann, Lutz"],["dc.contributor.author","Magdon, Paul"],["dc.contributor.author","Cañellas, Isabel"],["dc.contributor.author","Sixto, Hortensia"],["dc.contributor.author","Kleinn, Christoph"],["dc.date.accessioned","2017-09-07T11:47:09Z"],["dc.date.available","2017-09-07T11:47:09Z"],["dc.date.issued","2015"],["dc.description.abstract","Tree biomass estimates in environmental studies are based on allometric models, which are known to vary with species, site, and other forest characteristics. The UNFCCC published a guideline to evaluate the appropriateness of biomass models before application, but it misleads the concept of model suitability and does also allow the selection of models with systematic deviations in the predictions. Here we present an alternative approach based on non-parametric techniques. The approach was tested for pure stands, but this methodology is likewise applicable to mixed forests. The proposed tests perform well in rejecting a model if the predictions for the targeted population are systematically deviant. It is demonstrated that the suitability of an allometric model is a matter of accuracy. The proposed method also allows localizing the model. The presented approach can improve the transparency of global forest monitoring systems and can be implemented with relatively small effort."],["dc.identifier.doi","10.1016/j.envsoft.2015.07.019"],["dc.identifier.gro","3149279"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/5938"],["dc.language.iso","en"],["dc.notes.intern","Kleinn Crossref Import"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | B | B05: Land use patterns in Jambi - quantification of structure, heterogeneity and changes of vegetation and land use as a basis for the explanation of ecological and socioeconomic functions"],["dc.relation.issn","1364-8152"],["dc.subject.gro","sfb990_journalarticles"],["dc.title","On the site-level suitability of biomass models"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI2008Journal Article [["dc.bibliographiccitation.firstpage","518"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Remote Sensing of Environment"],["dc.bibliographiccitation.lastpage","531"],["dc.bibliographiccitation.volume","113"],["dc.contributor.author","Fuchs, Hans"],["dc.contributor.author","Magdon, Paul"],["dc.contributor.author","Kleinn, Christoph"],["dc.contributor.author","Flessa, Heiner"],["dc.date.accessioned","2017-09-07T11:47:08Z"],["dc.date.available","2017-09-07T11:47:08Z"],["dc.date.issued","2008"],["dc.identifier.doi","10.1016/j.rse.2008.07.017"],["dc.identifier.gro","3149262"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/5919"],["dc.notes.intern","Kleinn Crossref Import"],["dc.notes.status","public"],["dc.notes.submitter","chake"],["dc.publisher","Elsevier BV"],["dc.relation.issn","0034-4257"],["dc.title","Estimating aboveground carbon in a catchment of the Siberian forest tundra: Combining satellite imagery and field inventory"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI2022Journal Article [["dc.bibliographiccitation.journal","Neural Computing and Applications"],["dc.contributor.author","Freudenberg, Maximilian"],["dc.contributor.author","Magdon, Paul"],["dc.contributor.author","Nölke, Nils"],["dc.date.accessioned","2022-09-01T09:49:17Z"],["dc.date.available","2022-09-01T09:49:17Z"],["dc.date.issued","2022"],["dc.description.abstract","Abstract\n \n We present a deep learning-based framework for individual tree crown delineation in aerial and satellite images. This is an important task, e.g., for forest yield or carbon stock estimation. In contrast to earlier work, the presented method creates irregular polygons instead of bounding boxes and also provides a tree cover mask for areas that are not separable. Furthermore, it is trainable with low amounts of training data and does not need 3D height information from, e.g., laser sensors. We tested the approach in two scenarios: (1) with 30 cm WorldView-3 satellite imagery from an urban region in Bengaluru, India, and (2) with 5 cm aerial imagery of a densely forested area near Gartow, Germany. The intersection over union between the reference and predicted tree cover mask is 71.2% for the satellite imagery and 81.9% for the aerial images. On the polygon level, the method reaches an accuracy of 46.3% and a recall of 63.7% in the satellite images and an accuracy of 52% and recall of 66.2% in the aerial images, which is comparable to previous works that only predicted bounding boxes. Depending on the image resolution, limitations to separate individual tree crowns occur in situations where trees are hardly separable even for human image interpreters (e.g., homogeneous canopies, very small trees). The results indicate that the presented approach can efficiently delineate individual tree crowns in high-resolution optical images. Given the high availability of such imagery, the framework provides a powerful tool for tree monitoring. The source code and pretrained weights are publicly available at\n https://github.com/AWF-GAUG/TreeCrownDelineation\n ."],["dc.description.sponsorship"," Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659"],["dc.description.sponsorship"," Bundesministerium fur Verkehr und Digitale Infrastruktur http://dx.doi.org/10.13039/100008383"],["dc.description.sponsorship"," Georg-August-Universität Göttingen 501100003385"],["dc.identifier.doi","10.1007/s00521-022-07640-4"],["dc.identifier.pii","7640"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/113385"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-597"],["dc.relation.eissn","1433-3058"],["dc.relation.issn","0941-0643"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Individual tree crown delineation in high-resolution remote sensing images based on U-Net"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2020Journal Article Research Paper [["dc.bibliographiccitation.firstpage","24"],["dc.bibliographiccitation.issue","14"],["dc.bibliographiccitation.journal","AFZ, der Wald"],["dc.bibliographiccitation.lastpage","26"],["dc.bibliographiccitation.volume","75"],["dc.contributor.author","Fuchs, H."],["dc.contributor.author","Baaske, J."],["dc.contributor.author","Magdon, Paul"],["dc.contributor.author","Spors, H.-J."],["dc.contributor.author","Kleinn, C."],["dc.date.accessioned","2020-11-09T13:16:00Z"],["dc.date.available","2020-11-09T13:16:00Z"],["dc.date.issued","2020"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/68624"],["dc.title","Drohnengestützte Flächenermittlung von Wildscheinumbruch"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details