Options
Nolte-Kaitschick, Jessica
Loading...
Preferred name
Nolte-Kaitschick, Jessica
Official Name
Nolte-Kaitschick, Jessica
Alternative Name
Nolte-Kaitschick, J.
Nolte, Jessica
Nolte, J.
Main Affiliation
Now showing 1 - 10 of 10
2009Journal Article [["dc.bibliographiccitation.firstpage","345"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","MHR Basic science of reproductive medicine"],["dc.bibliographiccitation.lastpage","353"],["dc.bibliographiccitation.volume","15"],["dc.contributor.author","Zechner, Ulrich"],["dc.contributor.author","Nolte, Jessica"],["dc.contributor.author","Wolf, Marieke"],["dc.contributor.author","Shirneshan, Katayoon"],["dc.contributor.author","El Hajj, Nady"],["dc.contributor.author","Weise, Daniela"],["dc.contributor.author","Kaltwasser, Britta"],["dc.contributor.author","Zovoilis, Athanasios"],["dc.contributor.author","Haaf, Thomas"],["dc.contributor.author","Engel, Wolfgang"],["dc.date.accessioned","2018-11-07T08:29:31Z"],["dc.date.available","2018-11-07T08:29:31Z"],["dc.date.issued","2009"],["dc.description.abstract","Recently, several groups described the isolation of mouse spermatogonial stem cells (SSCs) and their potential to develop to embryonic stem cell (ESC)-like cells, so-called multipotent germline stem cells (mGSCs). We were the first to derive such mGSCs from SSCs isolated from adult mouse testis and, therefore, called these mGSCs multipotent adult germline stem cells (maGSCs). Here, we comparatively analyzed gene-specific and global DNA methylation profiles as well as the telomerase biology of several maGSC and male ESC lines. We show that undifferentiated maGSCs are very similar to undifferentiated male ESCs with regard to global DNA methylation, methylation of pluripotency marker gene loci, telomerase activity and telomere length. Imprinted gene methylation levels were generally lower in undifferentiated maGSCs than in undifferentiated male ESCs, but, compared with undifferentiated mGSCs derived by other groups, more similar to those of male ESCs. Differentiation of maGSCs increased the methylation of three of the four analyzed imprinted genes to almost somatic methylation patterns, but dramatically decreased global DNA methylation. Our findings further substantiate the pluripotency of maGSCs and their potential for regenerative medicine."],["dc.identifier.doi","10.1093/molehr/gap023"],["dc.identifier.isi","000265952900003"],["dc.identifier.pmid","19297418"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/16675"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Oxford Univ Press"],["dc.relation.issn","1360-9947"],["dc.title","Comparative methylation profiles and telomerase biology of mouse multipotent adult germline stem cells and embryonic stem cells"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2014Journal Article [["dc.bibliographiccitation.firstpage","2862"],["dc.bibliographiccitation.issue","23"],["dc.bibliographiccitation.journal","Stem Cells and Development"],["dc.bibliographiccitation.lastpage","2874"],["dc.bibliographiccitation.volume","23"],["dc.contributor.author","Luehrig, Sandra"],["dc.contributor.author","Siamishi, Iliana"],["dc.contributor.author","Tesmer-Wolf, Marieke"],["dc.contributor.author","Zechner, Ulrich"],["dc.contributor.author","Engel, Wolfgang"],["dc.contributor.author","Nolte, Jessica"],["dc.date.accessioned","2018-11-07T09:32:22Z"],["dc.date.available","2018-11-07T09:32:22Z"],["dc.date.issued","2014"],["dc.description.abstract","The gene Lrrc34 (leucine rich repeat containing 34) is highly expressed in pluripotent stem cells and its expression is strongly downregulated upon differentiation. These results let us to suggest a role for Lrrc34 in the regulation and maintenance of pluripotency. Expression analyses revealed that Lrrc34 is predominantly expressed in pluripotent stem cells and has an impact on the expression of known pluripotency genes, such as Oct4. Methylation studies of the Lrrc34 promoter showed a hypomethylation in undifferentiated stem cells and chromatin immunoprecipitation-quantitative polymerase chain reaction analyses of histone modifications revealed an enrichment of activating histone modifications on the Lrrc34 promoter region. Further, we could verify the nucleolus-the place of ribosome biogenesis-as the major subcellular localization of the LRRC34 protein. We have verified the interaction of LRRC34 with two major nucleolar proteins, Nucleophosmin and Nucleolin, by two independent methods, suggesting a role for Lrrc34 in ribosome biogenesis of pluripotent stem cells. In conclusion, LRRC34 is a novel nucleolar protein that is predominantly expressed in pluripotent stem cells. Its altered expression has an impact on pluripotency-regulating genes and it interacts with proteins known to be involved in ribosome biogenesis. Therefore we suggest a role for Lrrc34 in ribosome biogenesis of pluripotent stem cells."],["dc.description.sponsorship","German Research Foundation (DFG) [SPP1356, 941/1-2]; [ZE442/4-2]"],["dc.identifier.doi","10.1089/scd.2013.0470"],["dc.identifier.isi","000344914300006"],["dc.identifier.pmid","24991885"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/31741"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Mary Ann Liebert, Inc"],["dc.relation.issn","1557-8534"],["dc.relation.issn","1547-3287"],["dc.title","Lrrc34, a Novel Nucleolar Protein, Interacts with Npm1 and Ncl and Has an Impact on Pluripotent Stem Cells"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2006Journal Article [["dc.bibliographiccitation.firstpage","125"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Developmental Cell"],["dc.bibliographiccitation.lastpage","132"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Nayernia, Karim"],["dc.contributor.author","Nolte, Jessica"],["dc.contributor.author","Michelmann, Hans Wilhelm"],["dc.contributor.author","Lee, Jae Ho"],["dc.contributor.author","Rathsack, Kristina"],["dc.contributor.author","Drusenheimer, Nadja"],["dc.contributor.author","Dev, Arvind"],["dc.contributor.author","Wulf, Gerald"],["dc.contributor.author","Ehrmann, Ingrid E."],["dc.contributor.author","Elliott, David J."],["dc.contributor.author","Okpanyi, Vera"],["dc.contributor.author","Zechner, Ulrich"],["dc.contributor.author","Haaf, Thomas"],["dc.contributor.author","Meinhardt, Andreas"],["dc.contributor.author","Engel, Wolfgang"],["dc.date.accessioned","2018-11-07T09:35:07Z"],["dc.date.available","2018-11-07T09:35:07Z"],["dc.date.issued","2006"],["dc.description.abstract","Male gametes originate from a small population of spermatogonial stem cells (SSCs). These cells are believed to divide infinitely and to support spermatogenesis throughout life in the male. Here, we developed a strategy for the establishment of SSC lines from embryonic stem (ES) cells. These cells are able to undergo meiosis, are able to generate haploid male gametes in vitro, and are functional, as shown by fertilization after intracytoplasmic injection into mouse oocytes. Resulting two-cell embryos were transferred into oviducts, and live mice were born. Six of seven animals developed to adult mice. This is a clear indication that male gametes derived in vitro from ES cells by this strategy are able to induce normal fertilization and development. Our approach provides an accessible in vitro model system for studies of mammalian gametogenesis, as well as for the development of new strategies for the generation of transgenic mice and treatment of infertility."],["dc.identifier.doi","10.1016/j.devcel.2006.05.010"],["dc.identifier.isi","000239128300015"],["dc.identifier.pmid","16824959"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/32324"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Cell Press"],["dc.relation.issn","1534-5807"],["dc.title","In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2011Journal Article [["dc.bibliographiccitation.artnumber","e22413"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","PLoS ONE"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Xu, X."],["dc.contributor.author","Pantakani, Dasaradha Venkata Krishna"],["dc.contributor.author","Luehrig, Sandra"],["dc.contributor.author","Tan, Xiaoying"],["dc.contributor.author","Khromov, Tatjana"],["dc.contributor.author","Nolte, Jessica"],["dc.contributor.author","Dressel, Ralf"],["dc.contributor.author","Zechner, Ulrich"],["dc.contributor.author","Engel, Wolfgang"],["dc.date.accessioned","2018-11-07T08:54:13Z"],["dc.date.available","2018-11-07T08:54:13Z"],["dc.date.issued","2011"],["dc.description.abstract","Embryonic stem cells (ESCs) generated from the in-vitro culture of blastocyst stage embryos are known as equivalent to blastocyst inner cell mass (ICM) in-vivo. Though several reports have shown the expression of germ cell/pre-meiotic (GC/PrM) markers in ESCs, their functional relevance for the pluripotency and germ line commitment are largely unknown. In the present study, we used mouse as a model system and systematically analyzed the RNA and protein expression of GC/PrM markers in ESCs and found them to be comparable to the expression of cultured pluripotent cells originated from the germ line. Further, siRNA knockdown experiments have demonstrated the parallel maintenance and independence of pluripotent and GC/PrM networks in ESCs. Through chromatin immunoprecipitation experiments, we observed that pluripotent cells exhibit active chromatin states at GC marker genes and a bivalent chromatin structure at PrM marker genes. Moreover, gene expression analysis during the time course of iPS cells generation revealed that the expression of GC markers precedes pluripotency markers. Collectively, through our observations we hypothesize that the chromatin state and the expression of GC/PrM markers might indicate molecular parallels between in-vivo germ cell specification and pluripotent stem cell generation."],["dc.identifier.doi","10.1371/journal.pone.0022413"],["dc.identifier.isi","000293172900028"],["dc.identifier.pmid","21799849"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/8198"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/22620"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Public Library Science"],["dc.relation.issn","1932-6203"],["dc.rights","CC BY 2.5"],["dc.rights.uri","https://creativecommons.org/licenses/by/2.5"],["dc.title","Stage-Specific Germ-Cell Marker Genes Are Expressed in All Mouse Pluripotent Cell Types and Emerge Early during Induced Pluripotency"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2010Journal Article [["dc.bibliographiccitation.firstpage","184"],["dc.bibliographiccitation.issue","4-5"],["dc.bibliographiccitation.journal","Differentiation"],["dc.bibliographiccitation.lastpage","194"],["dc.bibliographiccitation.volume","80"],["dc.contributor.author","Nolte, Jessica"],["dc.contributor.author","Michelmann, Hans Wilhelm"],["dc.contributor.author","Wolf, Marieke"],["dc.contributor.author","Wulf, Gerald"],["dc.contributor.author","Nayernia, Karim"],["dc.contributor.author","Meinhardt, Andreas"],["dc.contributor.author","Zechner, Ulrich"],["dc.contributor.author","Engel, Wolfgang"],["dc.date.accessioned","2018-11-07T08:37:27Z"],["dc.date.available","2018-11-07T08:37:27Z"],["dc.date.issued","2010"],["dc.description.abstract","Spermatogonial stem cells (SSCs) provide the basis for spermatogenesis throughout adult life by undergoing self-renewal and differentiation into sperm. SSC-derived cell lines called multipotent adult germline stem cells (maGSCs) were recently shown to be pluripotent and to have the same potential as embryonic stem cells (ESCs). In a differentiation protocol using retinoic acid(RA) and based on a double selection strategy, we have shown that ESCs are able to undergo meiosis and produce haploid male germ cells in vitro. Using this differentiation protocol we have now succeeded to generate haploid male germ cells from maGSCs in vitro. maGSCs derived from a Stra8-EGFP transgenic mouse line were differentiated into stable spermatogonial stages and further cultured. These cells were transfected with a post meiotic specific promoter construct Prm1-DsRed to monitor retinoic acid(RA) induced differentiation into haploid male gametes. Our protocol is another approach for the production of pluripotent stem cell derived gametes (PSCDGs) and is an alternative for the investigation of mammalian spermatogenesis, germ line gene modification and epigenetic reprogramming. If reproducible with pluripotent cell lines derived from human SSCs, it could also be used as a therapeutic approach for the treatment of male infertility. (C) 2010 International Society of Differentiation. Published by Elsevier Ltd. All rights reserved."],["dc.description.sponsorship","Deutsche Forschungsgemeinschaft [SPP 1356, FOR 1041]"],["dc.identifier.doi","10.1016/j.diff.2010.08.001"],["dc.identifier.isi","000283655200002"],["dc.identifier.pmid","20810205"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/18533"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Elsevier Sci Ltd"],["dc.relation.issn","0301-4681"],["dc.title","PSCDGs of mouse multipotent adult germline stem cells can enter and progress through meiosis to form haploid male germ cells in vitro"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2013Journal Article [["dc.bibliographiccitation.firstpage","1045"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Stem Cell Research"],["dc.bibliographiccitation.lastpage","1059"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Tan, Xiaoying"],["dc.contributor.author","Xu, X."],["dc.contributor.author","Elkenani, Manar"],["dc.contributor.author","Smorag, Lukasz"],["dc.contributor.author","Zechner, Ulrich"],["dc.contributor.author","Nolte, Jessica"],["dc.contributor.author","Engel, Wolfgang"],["dc.contributor.author","Pantakani, Dasaradha Venkata Krishna"],["dc.date.accessioned","2018-11-07T09:17:54Z"],["dc.date.available","2018-11-07T09:17:54Z"],["dc.date.issued","2013"],["dc.description.abstract","Pluripotency is maintained by both known and unknown transcriptional regulatory networks. In the present study, we have identified Zfp819, a KRAB-zinc finger protein, as a novel pluripotency-related factor and characterized its role in pluripotent stem cells. We show that Zfp819 is expressed highly in various types of pluripotent stem cells but not in their differentiated counterparts. We identified the presence of non-canonical nuclear localization signals in particular zinc finger motifs and identified them as responsible for the nuclear localization of Zfp819. Analysis of the Zfp819 promoter region revealed the presence of a transcriptionally active chromatin signature. Moreover, we confirmed the binding of pluripotency-related factors, Oct4, Sox2, and Nanog to the distal promoter region of Zfp819, indicating that the expression of this gene is regulated by a pluripotency transcription factor network. We found that the expression of endogenous retroviral elements (ERVs) such as Intracisternal A Particle (IAP) retrotransposons, Long Interspersed Nuclear Elements (LINE1), and Short Interspersed Nuclear Elements (SINE B1) is significantly upregulated in Zfp819-knockdown (Zfp819_KD) cells. In line with the activation of ERVs, we observed the occurrence of spontaneous DNA damage in Zfp819_KD cells. Furthermore, we tested whether Zfp819 can interact with KAP1, a KRAB-associated protein with a transcriptional repression function, and found the interaction between these two proteins in both in vitro and in vivo experiments. The challenging of Zfp819_KD cells with DNA damaging agent revealed that these cells are inefficient in repairing the damaged DNA, as cells showed presence of gamma H2A.X foci for a prolonged time. Collectively, our study identified Zfp819 as a novel pluripotency-related factor and unveiled its function in genomic integrity maintenance mechanisms of mouse embryonic stem cells. (C) 2013 Elsevier B.V. All rights reserved."],["dc.identifier.doi","10.1016/j.scr.2013.07.006"],["dc.identifier.isi","327905300008"],["dc.identifier.pmid","23954693"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/28283"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Elsevier Science Bv"],["dc.relation.issn","1876-7753"],["dc.relation.issn","1873-5061"],["dc.title","Zfp819, a novel KRAB-zinc finger protein, interacts with KAP1 and functions in genomic integrity maintenance of mouse embryonic stem cells"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2011Journal Article [["dc.bibliographiccitation.firstpage","166"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","MHR Basic science of reproductive medicine"],["dc.bibliographiccitation.lastpage","174"],["dc.bibliographiccitation.volume","17"],["dc.contributor.author","Khromov, Tatjana"],["dc.contributor.author","Pantakani, Dasaradha Venkata Krishna"],["dc.contributor.author","Nolte, Jessica"],["dc.contributor.author","Wolf, Marieke"],["dc.contributor.author","Dressel, Ralf"],["dc.contributor.author","Engel, Wolfgang"],["dc.contributor.author","Zechner, Ulrich"],["dc.date.accessioned","2018-11-07T08:58:57Z"],["dc.date.available","2018-11-07T08:58:57Z"],["dc.date.issued","2011"],["dc.description.abstract","We previously reported the generation of multipotent adult germline stem cells (maGSCs) from spermatogonial stem cells (SSCs) isolated from adult mouse testis. In a later study, we substantiated the pluripotency of maGSCs by demonstrating their close similarity to pluripotent male embryonic stem cells (ESCs) at the epigenetic level of global and gene-specific DNA methylation. Here, we extended the comparative epigenetic analysis of maGSCs and male ESCs by investigating the second main epigenetic modification in mammals, i.e. global and gene-specific modifications of histones (H3K4 trimethylation, H3K9 acetylation, H3K9 trimethylation and H3K27 trimethylation). Using immunofluorescence staining, flow cytometry and western blot analysis, we show that maGSCs are very similar to male ESCs with regard to global levels and nuclear distribution patterns of these modifications. Chromatin immunoprecipitation real-time PCR analysis of these modifications at the gene-specific level further revealed modification patterns of the pluripotency marker genes Oct4, Sox2 and Nanog in maGSCs that are nearly identical to those of male ESCs. These genes were enriched for activating histone modifications including H3K4me3 and H3K9ac and depleted of repressive histone modifications including H3K27me3 and H3K9me3. In addition, Hoxa11, a key regulator of early embryonic development showed the ESC-typical bivalent chromatin conformation with enrichment of both the activating H3K4me3 and the repressive H3K27me3 modification also in maGSCs. Collectively, our results demonstrate that maGSCs also closely resemble ESCs with regard to their chromatin state and further evidence their pluripotent nature."],["dc.identifier.doi","10.1093/molehr/gaq085"],["dc.identifier.isi","000287257000003"],["dc.identifier.pmid","20935159"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/23771"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Oxford Univ Press"],["dc.relation.issn","1360-9947"],["dc.title","Global and gene-specific histone modification profiles of mouse multipotent adult germline stem cells"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2008Journal Article Research Paper [["dc.bibliographiccitation.firstpage","521"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Molecular Human Reproduction"],["dc.bibliographiccitation.lastpage","529"],["dc.bibliographiccitation.volume","14"],["dc.contributor.author","Zovoilis, Athanasios"],["dc.contributor.author","Nolte, Jessica"],["dc.contributor.author","Drusenheimer, Nadja"],["dc.contributor.author","Zechner, Ulrich"],["dc.contributor.author","Hada, Hiroki"],["dc.contributor.author","Guan, Kaomei"],["dc.contributor.author","HasenfuĂź, Gerd"],["dc.contributor.author","Nayernia, Karim"],["dc.contributor.author","Engel, Wolfgang"],["dc.date.accessioned","2017-09-07T11:48:13Z"],["dc.date.available","2017-09-07T11:48:13Z"],["dc.date.issued","2008"],["dc.description.abstract","Spermatogonial stem cells (SSCs) isolated from the adult mouse testis and cultured have been shown to respond to culture conditions and become pluripotent, so called multipotent adult germline stem cells (maGSCs). microRNAs (miRNAs) belonging to the 290 and 302 miRNA clusters have been previously classified as embryonic stem cell (ESC) specific. Here, we show that these miRNAs generally characterize pluripotent cells. They are expressed not only in ESCs but also in maGSCs as well as in the F9 embryonic carcinoma cell (ECC) line. In addition, we tested the time-dependent influence of different factors that promote loss of pluripotency on levels of these miRNAs in all three pluripotent cell types. Despite the differences regarding time and extent of differentiation observed between ESCs and maGSCs, expression profiles of both miRNA families showed similarities between these two cell types, suggesting similar underlying mechanisms in maintenance of pluripotency and differentiation. Our results indicate that the 290-miRNA family is connected with Oct-4 and maintenance of the pluripotent state. In contrast, members of the 302-miRNA family are induced during first stages of in vitro differentiation in all cell types tested. Therefore, detection of miRNAs of miR-302 family in pluripotent cells can be attributed to the proportion of spontaneously differentiating cells in cultures of pluripotent cells. These results are consistent with ESC-like nature of maGSCs and their potential as an alternative source of pluripotent cells from non-embryonic tissues."],["dc.identifier.doi","10.1093/molehr/gan044"],["dc.identifier.gro","3143248"],["dc.identifier.isi","000259585200003"],["dc.identifier.pmid","18697907"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/741"],["dc.notes.intern","WoS Import 2017-03-10 / Funder: German Research Foundation [SPP 1356, EN 84/22-1, ZE 442/4-1]"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Oxford Univ Press"],["dc.relation.issn","1360-9947"],["dc.title","Multipotent adult germline stem cells and embryonic stem cells have similar microRNA profiles"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2012Journal Article [["dc.bibliographiccitation.firstpage","677"],["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","Biology of the Cell"],["dc.bibliographiccitation.lastpage","692"],["dc.bibliographiccitation.volume","104"],["dc.contributor.author","Smorag, Lukasz"],["dc.contributor.author","Zheng, Y."],["dc.contributor.author","Nolte, Jessica"],["dc.contributor.author","Zechner, Ulrich"],["dc.contributor.author","Engel, Wolfgang"],["dc.contributor.author","Pantakani, Dasaradha Venkata Krishna"],["dc.date.accessioned","2018-11-07T09:04:07Z"],["dc.date.available","2018-11-07T09:04:07Z"],["dc.date.issued","2012"],["dc.description.abstract","Background information Recently, it became apparent that microRNAs (miRNAs) can regulate gene expression post-transcriptionally. Despite the advances in identifying the testis-expressed miRNAs and their role in spermatogenesis, only few data are available showing the spatiotemporal expression of miRNAs during this process. Results To understand how different miRNAs can regulate germ cells differentiation, we generated a transgenic mouse model and purified pure populations of premeiotic (PrM) cells and primary spermatocytes (meiotic cells). We also established spermatogonial stem cell (SSC) culture using relatively simple and robust culture conditions. Comparison of global miRNA expression in these germ cell populations revealed 17 SSC-, 11 PrM- and 13 meiotic-specific miRNAs. We identified nine miRNAs as specific for both SSC and PrM cells and another nine miRNAs as specific for PrM and meiotic cells. Additionally, 45 miRNAs were identified as commonly expressed in all three cell types. Several of PrM- and meiotic-specific miRNAs were identified as exclusively/preferentially expressed in testis. We were able to identify the relevant target genes for many of these miRNAs. The luciferase reporter assays with SSC (miR-221)-, PrM (miR-203)- and meiotic (miR-34b-5p)-specific miRNAs and 3'-untranslated region constructs of their targets, c-Kit, Rbm44 and Cdk6, respectively, showed an approximately 30%40% decrease in reporter activity. Moreover, we observed a reduced expression of endogenous proteins, c-Kit and Cdk6, when the testis-derived cell lines, GC-1 and GC-4, were transfected with miRNA mimics for miR-221 and miR-34b-5p, respectively. Conclusions Taken together, we established the miRNA signature of SSC, PrM and meiotic cells and show evidence for their functional relevance during the process of spermatogenesis by target prediction and validation. Through our observations, we propose a working model in which the stage-specific miRNAs such as miR-221, -203 and -34b-5p coordinate the regulation of spermatogenesis."],["dc.identifier.doi","10.1111/boc.201200014"],["dc.identifier.isi","000310391100006"],["dc.identifier.pmid","22909339"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/9536"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/25040"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.relation.issn","1768-322X"],["dc.relation.issn","0248-4900"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","MicroRNA signature in various cell types of mouse spermatogenesis: Evidence for stage-specifically expressed miRNA-221, -203 and -34b-5p mediated spermatogenesis regulation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2007Review [["dc.bibliographiccitation.firstpage","41"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","IRANIAN JOURNAL OF REPRODUCTIVE MEDICINE"],["dc.bibliographiccitation.lastpage","44"],["dc.bibliographiccitation.volume","5"],["dc.contributor.author","Nayernia, Karim"],["dc.contributor.author","Lee, Jae Ho"],["dc.contributor.author","Engel, Wolfgang"],["dc.contributor.author","Nolte, Jessica"],["dc.contributor.author","Drusenheimer, Nadja"],["dc.contributor.author","Rathsack, Kristina"],["dc.contributor.author","Dev, Arvind"],["dc.contributor.author","Wulf, Gerald"],["dc.contributor.author","Ehrmann, Ingrid E."],["dc.contributor.author","Elliott, David J."],["dc.contributor.author","Zechner, Ulrich"],["dc.contributor.author","Haaf, Thomas"],["dc.contributor.author","Meinhardt, Andreas"],["dc.contributor.author","Michelmann, Hans Wilhelm"],["dc.contributor.author","Hasenfuss, Gerlad"],["dc.contributor.author","Guan, Kaomei"],["dc.date.accessioned","2018-11-07T11:04:31Z"],["dc.date.available","2018-11-07T11:04:31Z"],["dc.date.issued","2007"],["dc.description.abstract","Germline and somatic stem cells are distinct types of stem cells that are dedicated to reproduction and somatic tissue regeneration, respectively. Germline stem cells (GSCs), which can self-renew and generate gametes, are unique stem cells in that they are solely dedicated to transmit genetic information from generation to generation. We developed a strategy for the establishment of germline stem cell lines from embryonic stem cells (ES). These cells are able to undergo meiosis, generate haploid male gametes in vitro and are functional, as shown by fertilization after intra-cytoplasmic injection into mouse oocytes. In other approach, we show that bone marrow stem (BMS) cells are able to trans-differentiate into male germ cells. BMS cell-derived germ cells expressed the known molecular markers of primordial germ cells. The ability to derive male germ cells from ES and BMS cells reveals novel aspects of germ cell development and opens the possibilities for use of these cells in reproductive medicine. Conversely, we showed that adult male germline stem cells, spermatogonial stem cells (SSCs), can be converted into embryonic stem cell like cells which can differentiate into the somatic stem cells of three germ layers. Understanding how SSC can give rise to pluripotent stem cells and how somatic stem cells differentiate into germ cells could give significant insights into the regulation of developmental totipotency as well as having important implications for male fertility and regenerative medicine."],["dc.identifier.isi","000254385400001"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/51863"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.relation.issn","1680-6433"],["dc.title","From stem cells to germ cells and from germ cells to stem cells"],["dc.type","review"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]Details WOS