Now showing 1 - 3 of 3
  • 2019Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","681"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Circulation"],["dc.bibliographiccitation.lastpage","693"],["dc.bibliographiccitation.volume","140"],["dc.contributor.author","Alsina, Katherina M."],["dc.contributor.author","Hulsurkar, Mohit"],["dc.contributor.author","Brandenburg, Sören"],["dc.contributor.author","Kownatzki-Danger, Daniel"],["dc.contributor.author","Lenz, Christof"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Abu-Taha, Issam"],["dc.contributor.author","Kamler, Markus"],["dc.contributor.author","Chiang, David Y."],["dc.contributor.author","Lahiri, Satadru K."],["dc.contributor.author","Reynolds, Julia O."],["dc.contributor.author","Quick, Ann P."],["dc.contributor.author","Scott, Larry"],["dc.contributor.author","Word, Tarah A."],["dc.contributor.author","Gelves, Maria D."],["dc.contributor.author","Heck, Albert J.R."],["dc.contributor.author","Li, Na"],["dc.contributor.author","Dobrev, Dobromir"],["dc.contributor.author","Lehnart, Stephan E."],["dc.contributor.author","Wehrens, Xander H.T."],["dc.date.accessioned","2020-12-10T18:38:03Z"],["dc.date.available","2020-12-10T18:38:03Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1161/CIRCULATIONAHA.119.039642"],["dc.identifier.pmid","31185731"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/77173"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/203"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/133"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | S02: Hochauflösende Fluoreszenzmikroskopie und integrative Datenanalyse"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P03: Erhaltung und funktionelle Kopplung von ER-Kontakten mit der Plasmamembran"],["dc.relation.workinggroup","RG Lehnart"],["dc.relation.workinggroup","RG Brandenburg"],["dc.relation.workinggroup","RG Lenz"],["dc.title","Loss of Protein Phosphatase 1 Regulatory Subunit PPP1R3A Promotes Atrial Fibrillation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Circulation Research"],["dc.bibliographiccitation.volume","128"],["dc.contributor.author","Peper, Jonas"],["dc.contributor.author","Kownatzki-Danger, Daniel"],["dc.contributor.author","Weninger, Gunnar"],["dc.contributor.author","Seibertz, Fitzwilliam"],["dc.contributor.author","Pronto, Julius Ryan D."],["dc.contributor.author","Sutanto, Henry"],["dc.contributor.author","Pacheu-Grau, David"],["dc.contributor.author","Hindmarsh, Robin"],["dc.contributor.author","Brandenburg, Sören"],["dc.contributor.author","Lehnart, Stephan E."],["dc.date.accessioned","2021-06-01T09:42:10Z"],["dc.date.available","2021-06-01T09:42:10Z"],["dc.date.issued","2021"],["dc.description.abstract","Rationale: CAV3 (caveolin3) variants associated with arrhythmogenic cardiomyopathy and muscular dystrophy can disrupt post-Golgi surface trafficking. As CAV1 (caveolin1) was recently identified in cardiomyocytes, we hypothesize that conserved isoform-specific protein/protein interactions orchestrate unique cardiomyocyte microdomain functions. To analyze the CAV1 versus CAV3 interactome, we employed unbiased live-cell proximity proteomic, isoform-specific affinity, and complexome profiling mass spectrometry techniques. We demonstrate the physiological relevance and loss-of-function mechanism of a novel CAV3 interactor in gene-edited human induced pluripotent stem cell cardiomyocytes. Objective: To identify differential CAV1 versus CAV3 protein interactions and to define the molecular basis of cardiac CAV3 loss-of-function. Methods and Results: Combining stable isotope labeling with proximity proteomics, we applied mass spectrometry to screen for putative CAV3 interactors in living cardiomyocytes. Isoform-specific affinity proteomic and co-immunoprecipitation experiments confirmed the monocarboxylate transporter McT1 (monocarboxylate transporter type 1) versus aquaporin1, respectively, as CAV3 or CAV1 specific interactors in cardiomyocytes. Superresolution stimulated emission depletion microscopy showed distinct CAV1 versus CAV3 cluster distributions in cardiomyocyte transverse tubules. CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/Cas9 nuclease)-mediated CAV3 knockout uncovered a stabilizing role for McT1 surface expression, proton-coupled lactate shuttling, increased late Na + currents, and early afterdepolarizations in human induced pluripotent stem cell-derived cardiomyocytes. Complexome profiling confirmed that McT1 and the Na,K-ATPase form labile protein assemblies with the multimeric CAV3 complex. Conclusions: Combining the strengths of proximity and affinity proteomics, we identified isoform-specific CAV1 versus CAV3 binding partners in cardiomyocytes. McT1 represents a novel class of metabolically relevant CAV3-specific interactors close to mitochondria in cardiomyocyte transverse tubules. CAV3 knockout uncovered a previously unknown role for functional stabilization of McT1 in the surface membrane of human cardiomyocytes. Strikingly, CAV3 deficient cardiomyocytes exhibit action potential prolongation and instability, reproducing human reentry arrhythmias in silico. Given that lactate is a major substrate for stress adaption both in the healthy and the diseased human heart, future studies of conserved McT1/CAV3 interactions may provide rationales to target this muscle-specific assembly function therapeutically."],["dc.identifier.doi","10.1161/CIRCRESAHA.119.316547"],["dc.identifier.pmid","33486968"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/85167"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/216"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/383"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/135"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A06: Molekulare Grundlagen mitochondrialer Kardiomyopathien"],["dc.relation","SFB 1002 | A09: Lokale molekulare Nanodomänen-Regulation der kardialen Ryanodin-Rezeptor-Funktion"],["dc.relation","SFB 1002 | D01: Erholung aus der Herzinsuffizienz – Einfluss von Fibrose und Transkriptionssignatur"],["dc.relation","SFB 1002 | D02: Neue Mechanismen der genomischen Instabilität bei Herzinsuffizienz"],["dc.relation","SFB 1002 | S01: In vivo und in vitro Krankheitsmodelle"],["dc.relation","SFB 1002 | S02: Hochauflösende Fluoreszenzmikroskopie und integrative Datenanalyse"],["dc.relation","SFB 1002 | A13: Bedeutung einer gestörten zytosolischen Calciumpufferung bei der atrialen Arrhythmogenese bei Patienten mit Herzinsuffizienz (HF)"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation.eissn","1524-4571"],["dc.relation.issn","0009-7330"],["dc.relation.workinggroup","RG Hasenfuß"],["dc.relation.workinggroup","RG Lehnart"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.relation.workinggroup","RG Voigt (Molecular Pharmacology)"],["dc.relation.workinggroup","RG Brandenburg"],["dc.relation.workinggroup","RG Cyganek (Stem Cell Unit)"],["dc.relation.workinggroup","RG Lenz"],["dc.relation.workinggroup","RG Wollnik"],["dc.relation.workinggroup","RG Urlaub (Bioanalytische Massenspektrometrie)"],["dc.title","Caveolin3 Stabilizes McT1-Mediated Lactate/Proton Transport in Cardiomyocytes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2018-07-13Research Data Research Paper
    [["dc.bibliographiccitation.artnumber","1227"],["dc.bibliographiccitation.journal","Frontiers in Physiology"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Brandenburg, Sören"],["dc.contributor.author","Pawlowitz, Jan"],["dc.contributor.author","Lehnart, Stephan Elmar"],["dc.contributor.author","Fakuade, Funsho E."],["dc.contributor.author","Kownatzki-Danger, Daniel"],["dc.contributor.author","Kohl, Tobias"],["dc.contributor.author","Mitronova, Gyuzel Y."],["dc.contributor.author","Scardigli, Marina"],["dc.contributor.author","Neef, Jakob"],["dc.contributor.author","Schmidt, Constanze"],["dc.contributor.author","Wiedmann, Felix"],["dc.contributor.author","Pavone, Francesco S."],["dc.contributor.author","Sacconi, Leonardo"],["dc.contributor.author","Kutschka, Ingo"],["dc.contributor.author","Sossalla, Samuel"],["dc.contributor.author","Moser, Tobias"],["dc.contributor.author","Voigt, Niels"],["dc.date.accessioned","2022-05-13T09:20:22Z"],["dc.date.available","2022-05-13T09:20:22Z"],["dc.date.issued","2018-07-13"],["dc.description.abstract","Rationale: Recently, abundant axial tubule (AT) membrane structures were identified deep inside atrial myocytes (AMs). Upon excitation, ATs rapidly activate intracellular Ca2+ release and sarcomeric contraction through extensive AT junctions, a cell-specific atrial mechanism. While AT junctions with the sarcoplasmic reticulum contain unusually large clusters of ryanodine receptor 2 (RyR2) Ca2+ release channels in mouse AMs, it remains unclear if similar protein networks and membrane structures exist across species, particularly those relevant for atrial disease modeling. Objective: To examine and quantitatively analyze the architecture of AT membrane structures and associated Ca2+ signaling proteins across species from mouse to human. Methods and Results: We developed superresolution microscopy (nanoscopy) strategies for intact live AMs based on a new custom-made photostable cholesterol dye and immunofluorescence imaging of membraneous structures and membrane proteins in fixed tissue sections from human, porcine, and rodent atria. Consistently, in mouse, rat, and rabbit AMs, intact cell-wide tubule networks continuous with the surface membrane were observed, mainly composed of ATs. Moreover, co-immunofluorescence nanoscopy showed L-type Ca2+ channel clusters adjacent to extensive junctional RyR2 clusters at ATs. However, only junctional RyR2 clusters were highly phosphorylated and may thus prime Ca2+ release at ATs, locally for rapid signal amplification. While the density of the integrated L-type Ca2+ current was similar in human and mouse AMs, the intracellular Ca2+ transient showed quantitative differences. Importantly, local intracellular Ca2+ release from AT junctions occurred through instantaneous action potential propagation via transverse tubules (TTs) from the surface membrane. Hence, sparse TTs were sufficient as electrical conduits for rapid activation of Ca2+ release through ATs. Nanoscopy of atrial tissue sections confirmed abundant ATs as the major network component of AMs, particularly in human atrial tissue sections. Conclusion: AT junctions represent a conserved, cell-specific membrane structure for rapid excitation-contraction coupling throughout a representative spectrum of species including human. Since ATs provide the major excitable membrane network component in AMs, a new model of atrial \"super-hub\" Ca2+ signaling may apply across biomedically relevant species, opening avenues for future investigations about atrial disease mechanisms and therapeutic targeting."],["dc.identifier.doi","10.3389/fphys.2018.01227"],["dc.identifier.pmid","30349482"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15400"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/107860"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/217"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A05: Molekulares Imaging von kardialen Calcium-Freisetzungsdomänen"],["dc.relation","SFB 1002 | A09: Lokale molekulare Nanodomänen-Regulation der kardialen Ryanodin-Rezeptor-Funktion"],["dc.relation","SFB 1002 | S02: Hochauflösende Fluoreszenzmikroskopie und integrative Datenanalyse"],["dc.relation","SFB 1002 | A13: Bedeutung einer gestörten zytosolischen Calciumpufferung bei der atrialen Arrhythmogenese bei Patienten mit Herzinsuffizienz (HF)"],["dc.relation.eissn","1664-042X"],["dc.relation.workinggroup","RG Brandenburg"],["dc.relation.workinggroup","RG Lehnart (Cellular Biophysics and Translational Cardiology Section)"],["dc.relation.workinggroup","RG Sossalla (Kardiovaskuläre experimentelle Elektrophysiologie und Bildgebung)"],["dc.relation.workinggroup","RG Voigt (Molecular Pharmacology)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","610"],["dc.title","Axial Tubule Junctions Activate Atrial Ca2+ Release across Species"],["dc.type","research_data"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC