Options
Brandenburg, Sören
Loading...
Preferred name
Brandenburg, Sören
Official Name
Brandenburg, Sören
Alternative Name
Brandenburg, S.
Main Affiliation
Now showing 1 - 8 of 8
2022Journal Article Research Paper [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Scientific Reports"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Weninger, Gunnar"],["dc.contributor.author","Pochechueva, Tatiana"],["dc.contributor.author","El Chami, Dana"],["dc.contributor.author","Luo, Xiaojing"],["dc.contributor.author","Kohl, Tobias"],["dc.contributor.author","Brandenburg, Sören"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Guan, Kaomei"],["dc.contributor.author","Lenz, Christof"],["dc.contributor.author","Lehnart, Stephan Elmar"],["dc.date.accessioned","2022-07-01T07:34:53Z"],["dc.date.available","2022-07-01T07:34:53Z"],["dc.date.issued","2022"],["dc.description.abstract","Calpains are calcium-activated neutral proteases involved in the regulation of key signaling pathways. Junctophilin-2 (JP2) is a Calpain-specific proteolytic target and essential structural protein inside Ca 2+ release units required for excitation-contraction coupling in cardiomyocytes. While downregulation of JP2 by Calpain cleavage in heart failure has been reported, the precise molecular identity of the Calpain cleavage sites and the (patho-)physiological roles of the JP2 proteolytic products remain controversial. We systematically analyzed the JP2 cleavage fragments as function of Calpain-1 versus Calpain-2 proteolytic activities, revealing that both Calpain isoforms preferentially cleave mouse JP2 at R565, but subsequently at three additional secondary Calpain cleavage sites. Moreover, we identified the Calpain-specific primary cleavage products for the first time in human iPSC-derived cardiomyocytes. Knockout of RyR2 in hiPSC-cardiomyocytes destabilized JP2 resulting in an increase of the Calpain-specific cleavage fragments. The primary N-terminal cleavage product NT 1 accumulated in the nucleus of mouse and human cardiomyocytes in a Ca 2+ -dependent manner, closely associated with euchromatic chromosomal regions, where NT 1 is proposed to function as a cardio-protective transcriptional regulator in heart failure. Taken together, our data suggest that stabilizing NT 1 by preventing secondary cleavage events by Calpain and other proteases could be an important therapeutic target for future studies."],["dc.description.sponsorship"," Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659"],["dc.description.sponsorship"," Deutsches Zentrum für Herz-Kreislaufforschung http://dx.doi.org/10.13039/100010447"],["dc.description.sponsorship","Herzzentrum Göttingen"],["dc.description.sponsorship","Open-Access-Publikationsfonds 2022"],["dc.identifier.doi","10.1038/s41598-022-14320-9"],["dc.identifier.pii","14320"],["dc.identifier.pmid","35725601"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112032"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/179"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/508"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/435"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-581"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P03: Erhaltung und funktionelle Kopplung von ER-Kontakten mit der Plasmamembran"],["dc.relation","SFB 1190 | Z02: Massenspektrometrie-basierte Proteomanalyse"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A09: Lokale molekulare Nanodomänen-Regulation der kardialen Ryanodin-Rezeptor-Funktion"],["dc.relation.eissn","2045-2322"],["dc.relation.workinggroup","RG Lehnart (Cellular Biophysics and Translational Cardiology Section)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Calpain cleavage of Junctophilin-2 generates a spectrum of calcium-dependent cleavage products and DNA-rich NT1-fragment domains in cardiomyocytes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2014Journal Article Research Paper [["dc.bibliographiccitation.artnumber","e51823"],["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.issue","92"],["dc.bibliographiccitation.journal","Journal of Visualized Experiments"],["dc.bibliographiccitation.lastpage","19"],["dc.contributor.author","Wagner, Eva"],["dc.contributor.author","Brandenburg, Sören"],["dc.contributor.author","Kohl, Tobias"],["dc.contributor.author","Lehnart, Stephan Elmar"],["dc.date.accessioned","2018-05-07T12:58:36Z"],["dc.date.available","2018-05-07T12:58:36Z"],["dc.date.issued","2014"],["dc.description.abstract","In cardiac myocytes a complex network of membrane tubules--the transverse-axial tubule system (TATS)--controls deep intracellular signaling functions. While the outer surface membrane and associated TATS membrane components appear to be continuous, there are substantial differences in lipid and protein content. In ventricular myocytes (VMs), certain TATS components are highly abundant contributing to rectilinear tubule networks and regular branching 3D architectures. It is thought that peripheral TATS components propagate action potentials from the cell surface to thousands of remote intracellular sarcoendoplasmic reticulum (SER) membrane contact domains, thereby activating intracellular Ca(2+) release units (CRUs). In contrast to VMs, the organization and functional role of TATS membranes in atrial myocytes (AMs) is significantly different and much less understood. Taken together, quantitative structural characterization of TATS membrane networks in healthy and diseased myocytes is an essential prerequisite towards better understanding of functional plasticity and pathophysiological reorganization. Here, we present a strategic combination of protocols for direct quantitative analysis of TATS membrane networks in living VMs and AMs. For this, we accompany primary cell isolations of mouse VMs and/or AMs with critical quality control steps and direct membrane staining protocols for fluorescence imaging of TATS membranes. Using an optimized workflow for confocal or superresolution TATS image processing, binarized and skeletonized data are generated for quantitative analysis of the TATS network and its components. Unlike previously published indirect regional aggregate image analysis strategies, our protocols enable direct characterization of specific components and derive complex physiological properties of TATS membrane networks in living myocytes with high throughput and open access software tools. In summary, the combined protocol strategy can be readily applied for quantitative TATS network studies during physiological myocyte adaptation or disease changes, comparison of different cardiac or skeletal muscle cell types, phenotyping of transgenic models, and pharmacological or therapeutic interventions."],["dc.identifier.doi","10.3791/51823"],["dc.identifier.pmid","25350293"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/14630"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/69"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A05: Molekulares Imaging von kardialen Calcium-Freisetzungsdomänen"],["dc.relation","SFB 1002 | A09: Lokale molekulare Nanodomänen-Regulation der kardialen Ryanodin-Rezeptor-Funktion"],["dc.relation.doi","10.3791/51823"],["dc.relation.eissn","1940-087X"],["dc.relation.issn","1940-087X"],["dc.relation.workinggroup","RG Brandenburg"],["dc.relation.workinggroup","RG Lehnart (Cellular Biophysics and Translational Cardiology Section)"],["dc.title","Analysis of tubular membrane networks in cardiac myocytes from atria and ventricles"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2022Journal Article [["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.journal","Journal of Molecular and Cellular Cardiology"],["dc.bibliographiccitation.lastpage","15"],["dc.bibliographiccitation.volume","173"],["dc.contributor.author","Brandenburg, Sören"],["dc.contributor.author","Drews, Lena"],["dc.contributor.author","Schönberger, Hanne-Lea"],["dc.contributor.author","Jacob, Christoph F."],["dc.contributor.author","Paulke, Nora Josefine"],["dc.contributor.author","Beuthner, Bo E."],["dc.contributor.author","Topci, Rodi"],["dc.contributor.author","Kohl, Tobias"],["dc.contributor.author","Neuenroth, Lisa"],["dc.contributor.author","Kutschka, Ingo"],["dc.contributor.author","Lehnart, Stephan E."],["dc.date.accessioned","2022-10-04T10:21:12Z"],["dc.date.available","2022-10-04T10:21:12Z"],["dc.date.issued","2022"],["dc.identifier.doi","10.1016/j.yjmcc.2022.08.363"],["dc.identifier.pii","S0022282822005193"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/114349"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-600"],["dc.relation.issn","0022-2828"],["dc.rights.uri","https://www.elsevier.com/tdm/userlicense/1.0/"],["dc.title","Direct proteomic and high-resolution microscopy biopsy analysis identifies distinct ventricular fates in severe aortic stenosis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2018-07-13Research Data Research Paper [["dc.bibliographiccitation.artnumber","1227"],["dc.bibliographiccitation.journal","Frontiers in Physiology"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Brandenburg, Sören"],["dc.contributor.author","Pawlowitz, Jan"],["dc.contributor.author","Lehnart, Stephan Elmar"],["dc.contributor.author","Fakuade, Funsho E."],["dc.contributor.author","Kownatzki-Danger, Daniel"],["dc.contributor.author","Kohl, Tobias"],["dc.contributor.author","Mitronova, Gyuzel Y."],["dc.contributor.author","Scardigli, Marina"],["dc.contributor.author","Neef, Jakob"],["dc.contributor.author","Schmidt, Constanze"],["dc.contributor.author","Wiedmann, Felix"],["dc.contributor.author","Pavone, Francesco S."],["dc.contributor.author","Sacconi, Leonardo"],["dc.contributor.author","Kutschka, Ingo"],["dc.contributor.author","Sossalla, Samuel"],["dc.contributor.author","Moser, Tobias"],["dc.contributor.author","Voigt, Niels"],["dc.date.accessioned","2022-05-13T09:20:22Z"],["dc.date.available","2022-05-13T09:20:22Z"],["dc.date.issued","2018-07-13"],["dc.description.abstract","Rationale: Recently, abundant axial tubule (AT) membrane structures were identified deep inside atrial myocytes (AMs). Upon excitation, ATs rapidly activate intracellular Ca2+ release and sarcomeric contraction through extensive AT junctions, a cell-specific atrial mechanism. While AT junctions with the sarcoplasmic reticulum contain unusually large clusters of ryanodine receptor 2 (RyR2) Ca2+ release channels in mouse AMs, it remains unclear if similar protein networks and membrane structures exist across species, particularly those relevant for atrial disease modeling. Objective: To examine and quantitatively analyze the architecture of AT membrane structures and associated Ca2+ signaling proteins across species from mouse to human. Methods and Results: We developed superresolution microscopy (nanoscopy) strategies for intact live AMs based on a new custom-made photostable cholesterol dye and immunofluorescence imaging of membraneous structures and membrane proteins in fixed tissue sections from human, porcine, and rodent atria. Consistently, in mouse, rat, and rabbit AMs, intact cell-wide tubule networks continuous with the surface membrane were observed, mainly composed of ATs. Moreover, co-immunofluorescence nanoscopy showed L-type Ca2+ channel clusters adjacent to extensive junctional RyR2 clusters at ATs. However, only junctional RyR2 clusters were highly phosphorylated and may thus prime Ca2+ release at ATs, locally for rapid signal amplification. While the density of the integrated L-type Ca2+ current was similar in human and mouse AMs, the intracellular Ca2+ transient showed quantitative differences. Importantly, local intracellular Ca2+ release from AT junctions occurred through instantaneous action potential propagation via transverse tubules (TTs) from the surface membrane. Hence, sparse TTs were sufficient as electrical conduits for rapid activation of Ca2+ release through ATs. Nanoscopy of atrial tissue sections confirmed abundant ATs as the major network component of AMs, particularly in human atrial tissue sections. Conclusion: AT junctions represent a conserved, cell-specific membrane structure for rapid excitation-contraction coupling throughout a representative spectrum of species including human. Since ATs provide the major excitable membrane network component in AMs, a new model of atrial \"super-hub\" Ca2+ signaling may apply across biomedically relevant species, opening avenues for future investigations about atrial disease mechanisms and therapeutic targeting."],["dc.identifier.doi","10.3389/fphys.2018.01227"],["dc.identifier.pmid","30349482"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15400"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/107860"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/217"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A05: Molekulares Imaging von kardialen Calcium-Freisetzungsdomänen"],["dc.relation","SFB 1002 | A09: Lokale molekulare Nanodomänen-Regulation der kardialen Ryanodin-Rezeptor-Funktion"],["dc.relation","SFB 1002 | S02: Hochauflösende Fluoreszenzmikroskopie und integrative Datenanalyse"],["dc.relation","SFB 1002 | A13: Bedeutung einer gestörten zytosolischen Calciumpufferung bei der atrialen Arrhythmogenese bei Patienten mit Herzinsuffizienz (HF)"],["dc.relation.eissn","1664-042X"],["dc.relation.workinggroup","RG Brandenburg"],["dc.relation.workinggroup","RG Lehnart (Cellular Biophysics and Translational Cardiology Section)"],["dc.relation.workinggroup","RG Sossalla (Kardiovaskuläre experimentelle Elektrophysiologie und Bildgebung)"],["dc.relation.workinggroup","RG Voigt (Molecular Pharmacology)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","610"],["dc.title","Axial Tubule Junctions Activate Atrial Ca2+ Release across Species"],["dc.type","research_data"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2016Journal Article Research Paper [["dc.bibliographiccitation.firstpage","3999"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Journal of Clinical Investigation"],["dc.bibliographiccitation.lastpage","4015"],["dc.bibliographiccitation.volume","126"],["dc.contributor.author","Brandenburg, Sören"],["dc.contributor.author","Kohl, Tobias"],["dc.contributor.author","Williams, George S. B."],["dc.contributor.author","Gusev, Konstantin"],["dc.contributor.author","Wagner, Eva"],["dc.contributor.author","Rog-Zielinska, Eva A."],["dc.contributor.author","Hebisch, Elke"],["dc.contributor.author","Dura, Miroslav"],["dc.contributor.author","Didié, Michael"],["dc.contributor.author","Gotthardt, Michael"],["dc.contributor.author","Nikolaev, Viacheslav O."],["dc.contributor.author","Kohl, Peter"],["dc.contributor.author","Ward, Christopher W."],["dc.contributor.author","Lederer, W. Jonathan"],["dc.contributor.author","Lehnart, Stephan E."],["dc.contributor.author","Hasenfuß, Gerd"],["dc.date.accessioned","2020-12-10T18:38:18Z"],["dc.date.available","2020-12-10T18:38:18Z"],["dc.date.issued","2016"],["dc.description.abstract","The canonical atrial myocyte (AM) is characterized by sparse transverse tubule (TT) invaginations and slow intracellular Ca2+ propagation but exhibits rapid contractile activation that is susceptible to loss of function during hypertrophic remodeling. Here, we have identified a membrane structure and Ca2+-signaling complex that may enhance the speed of atrial contraction independently of phospholamban regulation. This axial couplon was observed in human and mouse atria and is composed of voluminous axial tubules (ATs) with extensive junctions to the sarcoplasmic reticulum (SR) that include ryanodine receptor 2 (RyR2) clusters. In mouse AM, AT structures triggered Ca2+ release from the SR approximately 2 times faster at the AM center than at the surface. Rapid Ca2+ release correlated with colocalization of highly phosphorylated RyR2 clusters at AT-SR junctions and earlier, more rapid shortening of central sarcomeres. In contrast, mice expressing phosphorylation-incompetent RyR2 displayed depressed AM sarcomere shortening and reduced in vivo atrial contractile function. Moreover, left atrial hypertrophy led to AT proliferation, with a marked increase in the highly phosphorylated RyR2-pS2808 cluster fraction, thereby maintaining cytosolic Ca2+ signaling despite decreases in RyR2 cluster density and RyR2 protein expression. AT couplon \"super-hubs\" thus underlie faster excitation-contraction coupling in health as well as hypertrophic compensatory adaptation and represent a structural and metabolic mechanism that may contribute to contractile dysfunction and arrhythmias."],["dc.identifier.doi","10.1172/JCI88241"],["dc.identifier.gro","3141610"],["dc.identifier.isi","000384703300035"],["dc.identifier.pmid","27643434"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/77268"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/151"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A01: cAMP- und cGMP- Mikrodomänen bei Herzhypertrophie und Insuffizienz"],["dc.relation","SFB 1002 | A09: Lokale molekulare Nanodomänen-Regulation der kardialen Ryanodin-Rezeptor-Funktion"],["dc.relation","SFB 1002 | S01: In vivo und in vitro Krankheitsmodelle"],["dc.relation","SFB 1002 | S02: Hochauflösende Fluoreszenzmikroskopie und integrative Datenanalyse"],["dc.relation","SFB 1002 | Z: Zentrale Organisation und Verwaltung"],["dc.relation.eissn","1558-8238"],["dc.relation.issn","0021-9738"],["dc.relation.workinggroup","RG Brandenburg"],["dc.relation.workinggroup","RG Hasenfuß (Transition zur Herzinsuffizienz)"],["dc.relation.workinggroup","RG Lehnart (Cellular Biophysics and Translational Cardiology Section)"],["dc.relation.workinggroup","RG Nikolaev (Cardiovascular Research Center)"],["dc.title","Axial tubule junctions control rapid calcium signaling in atria"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2022Journal Article Research Paper [["dc.bibliographiccitation.firstpage","141"],["dc.bibliographiccitation.journal","Journal of Molecular and Cellular Cardiology"],["dc.bibliographiccitation.lastpage","157"],["dc.bibliographiccitation.volume","165"],["dc.contributor.author","Brandenburg, Sören"],["dc.contributor.author","Pawlowitz, Jan"],["dc.contributor.author","Steckmeister, Vanessa"],["dc.contributor.author","Subramanian, Hariharan"],["dc.contributor.author","Uhlenkamp, Dennis"],["dc.contributor.author","Scardigli, Marina"],["dc.contributor.author","Mushtaq, Mufassra"],["dc.contributor.author","Amlaz, Saskia I."],["dc.contributor.author","Kohl, Tobias"],["dc.contributor.author","Wegener, Jörg W."],["dc.contributor.author","Lehnart, Stephan E."],["dc.date.accessioned","2022-02-01T10:32:12Z"],["dc.date.available","2022-02-01T10:32:12Z"],["dc.date.issued","2022"],["dc.description.abstract","Axial tubule junctions with the sarcoplasmic reticulum control the rapid intracellular Ca2+-induced Ca2+ release that initiates atrial contraction. In atrial myocytes we previously identified a constitutively increased ryanodine receptor (RyR2) phosphorylation at junctional Ca2+ release sites, whereas non-junctional RyR2 clusters were phosphorylated acutely following β-adrenergic stimulation. Here, we hypothesized that the baseline synthesis of 3′,5′-cyclic adenosine monophosphate (cAMP) is constitutively augmented in the axial tubule junctional compartments of atrial myocytes. Confocal immunofluorescence imaging of atrial myocytes revealed that junctin, binding to RyR2 in the sarcoplasmic reticulum, was densely clustered at axial tubule junctions. Interestingly, a new transgenic junctin-targeted FRET cAMP biosensor was exclusively co-clustered in the junctional compartment, and hence allowed to monitor cAMP selectively in the vicinity of junctional RyR2 channels. To dissect local cAMP levels at axial tubule junctions versus subsurface Ca2+ release sites, we developed a confocal FRET imaging technique for living atrial myocytes. A constitutively high adenylyl cyclase activity sustained increased local cAMP levels at axial tubule junctions, whereas β-adrenergic stimulation overcame this cAMP compartmentation resulting in additional phosphorylation of non-junctional RyR2 clusters. Adenylyl cyclase inhibition, however, abolished the junctional RyR2 phosphorylation and decreased L-type Ca2+ channel currents, while FRET imaging showed a rapid cAMP decrease. In conclusion, FRET biosensor imaging identified compartmentalized, constitutively augmented cAMP levels in junctional dyads, driving both the locally increased phosphorylation of RyR2 clusters and larger L-type Ca2+ current density in atrial myocytes. This cell-specific cAMP nanodomain is maintained by a constitutively increased adenylyl cyclase activity, contributing to the rapid junctional Ca2+-induced Ca2+ release, whereas β-adrenergic stimulation overcomes the junctional cAMP compartmentation through cell-wide activation of non-junctional RyR2 clusters."],["dc.identifier.doi","10.1016/j.yjmcc.2022.01.003"],["dc.identifier.pii","S0022282822000062"],["dc.identifier.pmid","35033544"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/99034"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/391"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/414"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/168"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-517"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P03: Erhaltung und funktionelle Kopplung von ER-Kontakten mit der Plasmamembran"],["dc.relation.issn","0022-2828"],["dc.relation.workinggroup","RG Hasenfuß"],["dc.relation.workinggroup","RG Lehnart"],["dc.relation.workinggroup","RG Voigt (Molecular Pharmacology)"],["dc.relation.workinggroup","RG Brandenburg"],["dc.relation.workinggroup","RG Nikolaev (Cardiovascular Research Center)"],["dc.rights","CC BY-NC-ND 4.0"],["dc.rights.uri","https://www.elsevier.com/tdm/userlicense/1.0/"],["dc.title","A junctional cAMP compartment regulates rapid Ca2+ signaling in atrial myocytes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2019Journal Article Research Paper [["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","JCI insight"],["dc.bibliographiccitation.volume","4"],["dc.contributor.author","Brandenburg, Sören"],["dc.contributor.author","Pawlowitz, Jan"],["dc.contributor.author","Eikenbusch, Benjamin"],["dc.contributor.author","Peper, Jonas"],["dc.contributor.author","Kohl, Tobias"],["dc.contributor.author","Mitronova, Gyuzel Y."],["dc.contributor.author","Sossalla, Samuel"],["dc.contributor.author","Hasenfuss, Gerd"],["dc.contributor.author","Wehrens, Xander H. T."],["dc.contributor.author","Kohl, Peter"],["dc.contributor.author","Rog-Zielinska, Eva A."],["dc.contributor.author","Lehnart, Stephan E."],["dc.date.accessioned","2019-08-06T12:16:10Z"],["dc.date.available","2019-08-06T12:16:10Z"],["dc.date.issued","2019"],["dc.description.abstract","Atrial dysfunction is highly prevalent and associated with increased severity of heart failure. While rapid excitation-contraction coupling depends on axial junctions in atrial myocytes, the molecular basis of atrial loss of function remains unclear. We identified approximately 5-fold lower junctophilin-2 levels in atrial compared with ventricular tissue in mouse and human hearts. In atrial myocytes, this resulted in subcellular expression of large junctophilin-2 clusters at axial junctions, together with highly phosphorylated ryanodine receptor (RyR2) channels. To investigate the contribution of junctophilin-2 to atrial pathology in adult hearts, we developed a cardiomyocyte-selective junctophilin-2-knockdown model with 0 mortality. Junctophilin-2 knockdown in mice disrupted atrial RyR2 clustering and contractility without hypertrophy or interstitial fibrosis. In contrast, aortic pressure overload resulted in left atrial hypertrophy with decreased junctophilin-2 and RyR2 expression, disrupted axial junctions, and atrial fibrosis. Whereas pressure overload accrued atrial dysfunction and heart failure with 40% mortality, additional junctophilin-2 knockdown greatly exacerbated atrial dysfunction with 100% mortality. Strikingly, transgenic junctophilin-2 overexpression restored atrial contractility and survival through de novo biogenesis of polyadic junctional membrane complexes maintained after pressure overload. Our data show a central role of junctophilin-2 cluster disruption in atrial hypertrophy and identify transgenic augmentation of junctophilin-2 as a disease-mitigating rationale to improve atrial dysfunction and prevent heart failure deterioration."],["dc.identifier.doi","10.1172/jci.insight.127116"],["dc.identifier.pmid","31217359"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/62314"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/267"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A09: Lokale molekulare Nanodomänen-Regulation der kardialen Ryanodin-Rezeptor-Funktion"],["dc.relation","SFB 1002 | D01: Erholung aus der Herzinsuffizienz – Einfluss von Fibrose und Transkriptionssignatur"],["dc.relation","SFB 1002 | S01: In vivo und in vitro Krankheitsmodelle"],["dc.relation","SFB 1002 | S02: Hochauflösende Fluoreszenzmikroskopie und integrative Datenanalyse"],["dc.relation.eissn","2379-3708"],["dc.relation.issn","2379-3708"],["dc.relation.workinggroup","RG Brandenburg"],["dc.relation.workinggroup","RG Hasenfuß (Transition zur Herzinsuffizienz)"],["dc.relation.workinggroup","RG Lehnart (Cellular Biophysics and Translational Cardiology Section)"],["dc.relation.workinggroup","RG Sossalla (Kardiovaskuläre experimentelle Elektrophysiologie und Bildgebung)"],["dc.title","Junctophilin-2 expression rescues atrial dysfunction through polyadic junctional membrane complex biogenesis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2014Journal Article Research Paper [["dc.bibliographiccitation.firstpage","2106"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Journal of Cell Science"],["dc.bibliographiccitation.lastpage","2119"],["dc.bibliographiccitation.volume","127"],["dc.contributor.author","Arakel, Eric C."],["dc.contributor.author","Brandenburg, Sören"],["dc.contributor.author","Uchida, Keita"],["dc.contributor.author","Zhang, Haixia"],["dc.contributor.author","Lin, Yu-Wen"],["dc.contributor.author","Kohl, Tobias"],["dc.contributor.author","Schrul, Bianca"],["dc.contributor.author","Sulkin, Matthew S."],["dc.contributor.author","Efimov, Igor R."],["dc.contributor.author","Nichols, Colin G."],["dc.contributor.author","Lehnart, Stephan E."],["dc.contributor.author","Schwappach, Blanche"],["dc.date.accessioned","2017-09-07T11:46:16Z"],["dc.date.available","2017-09-07T11:46:16Z"],["dc.date.issued","2014"],["dc.description.abstract","The copy number of membrane proteins at the cell surface is tightly regulated. Many ion channels and receptors present retrieval motifs to COPI vesicle coats and are retained in the early secretory pathway. In some cases, the interaction with COPI is prevented by binding to 14-3- 3 proteins. However, the functional significance of this antagonism between COPI and 14-3-3 in terminally differentiated cells is unknown. Here, we show that ATP-sensitive K+ (K-ATP) channels, which are composed of Kir6.2 and SUR1 subunits, are stalled in the Golgi complex of ventricular, but not atrial, cardiomyocytes. Upon sustained beta-adrenergic stimulation, which leads to activation of protein kinase A (PKA), SUR1-containing channels reach the plasma membrane of ventricular cells. We show that PKA-dependent phosphorylation of the C-terminus of Kir6.2 decreases binding to COPI and, thereby, silences the arginine-based retrieval signal. Thus, activation of the sympathetic nervous system releases this population of KATP channels from storage in the Golgi and, hence, might facilitate the adaptive response to metabolic challenges."],["dc.identifier.doi","10.1242/jcs.141440"],["dc.identifier.gro","3142132"],["dc.identifier.isi","000335814800021"],["dc.identifier.pmid","24569881"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/10660"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4900"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/3"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A05: Molekulares Imaging von kardialen Calcium-Freisetzungsdomänen"],["dc.relation","SFB 1002 | A07:Rolle der TRC40-Maschinerie im Proteostase-Netzwerk von Kardiomyozyten"],["dc.relation.eissn","1477-9137"],["dc.relation.issn","0021-9533"],["dc.relation.workinggroup","RG Brandenburg"],["dc.relation.workinggroup","RG Lehnart (Cellular Biophysics and Translational Cardiology Section)"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.rights","CC BY 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/3.0"],["dc.title","Tuning the electrical properties of the heart by differential trafficking of K-ATP ion channel complexes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS