Options
Priebe, Marius
Loading...
Preferred name
Priebe, Marius
Official Name
Priebe, Marius
Alternative Name
Priebe, M.
Now showing 1 - 2 of 2
2016Journal Article Research Paper [["dc.bibliographiccitation.firstpage","680"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Biophysical Journal"],["dc.bibliographiccitation.lastpage","690"],["dc.bibliographiccitation.volume","110"],["dc.contributor.author","Bernhardt, Marten"],["dc.contributor.author","Priebe, Marius"],["dc.contributor.author","Osterhoff, Markus"],["dc.contributor.author","Wollnik, Bernd"],["dc.contributor.author","Diaz, Ana"],["dc.contributor.author","Salditt, Tim"],["dc.contributor.author","Rehfeldt, Florian"],["dc.date.accessioned","2017-09-07T11:54:39Z"],["dc.date.available","2017-09-07T11:54:39Z"],["dc.date.issued","2016"],["dc.description.abstract","Adult human mesenchymal stem cells show structural rearrangements of their cytoskeletal network during mechanically induced differentiation toward various cell types. In particular, the alignment of acto-myosin fibers is cell fate-dependent and can serve as an early morphological marker of differentiation. Quantification of such nanostructures on a mesoscopic scale requires high-resolution imaging techniques. Here, we use small-angle x-ray scattering with a spot size in the micro- and submicrometer range as a high-resolution and label-free imaging technique to reveal structural details of stem cells and differentiated cell types. We include principal component analysis into an automated empirical analysis scheme that allows the local characterization of oriented structures. Results on freeze-dried samples lead to quantitative structural information for all cell lines tested: differentiated cells reveal pronounced structural orientation and a relatively intense overall diffraction signal, whereas naive human mesenchymal stem cells lack these features. Our data support the hypothesis of stem cells establishing ordered structures along their differentiation process."],["dc.identifier.doi","10.1016/j.bpj.2015.12.017"],["dc.identifier.gro","3141731"],["dc.identifier.isi","000369467800017"],["dc.identifier.pmid","26840732"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14077"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/446"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1542-0086"],["dc.relation.issn","0006-3495"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.orgunit","Fakultät für Physik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.rights","CC BY 4.0"],["dc.subject.gro","x-ray imaging"],["dc.subject.gro","x-ray scattering"],["dc.title","X-Ray Micro- and Nanodiffraction Imaging on Human Mesenchymal Stem Cells and Differentiated Cells"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2012Journal Article Research Paper [["dc.bibliographiccitation.firstpage","19232"],["dc.bibliographiccitation.issue","17"],["dc.bibliographiccitation.journal","Optics Express"],["dc.bibliographiccitation.lastpage","19254"],["dc.bibliographiccitation.volume","20"],["dc.contributor.author","Wilke, Robin N."],["dc.contributor.author","Priebe, Marius"],["dc.contributor.author","Bartels, Matthias"],["dc.contributor.author","Giewekemeyer, Klaus"],["dc.contributor.author","Diaz, Ana"],["dc.contributor.author","Karvinen, P."],["dc.contributor.author","Salditt, Tim"],["dc.date.accessioned","2017-09-07T11:48:27Z"],["dc.date.available","2017-09-07T11:48:27Z"],["dc.date.issued","2012"],["dc.description.abstract","Ptychographic coherent X-ray diffractive imaging (PCDI) has been combined with nano-focus X-ray diffraction to study the structure and density distribution of unstained and unsliced bacterial cells, using a hard X-ray beam of 6.2keV photon energy, focused to about 90nm by a Fresnel zone plate lens. While PCDI provides images of the bacteria with quantitative contrast in real space with a resolution well below the beam size at the sample, spatially resolved small angle X-ray scattering using the same Fresnel zone plate (cellular nano-diffraction) provides structural information at highest resolution in reciprocal space up to 2nm(-1). We show how the real and reciprocal space approach can be used synergistically on the same sample and with the same setup. In addition, we present 3D hard X-ray imaging of unstained bacterial cells by a combination of ptychography and tomography. (C) 2012 Optical Society of America"],["dc.identifier.doi","10.1364/OE.20.019232"],["dc.identifier.fs","589591"],["dc.identifier.gro","3142482"],["dc.identifier.isi","000307873600075"],["dc.identifier.pmid","23038565"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/9566"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/8773"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10 / Funder: Deutsche Forschungsgemeinschaft [SFB 755]"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1094-4087"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.orgunit","Fakultät für Physik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.subject.gro","x-ray imaging"],["dc.subject.gro","x-ray scattering"],["dc.title","Hard X-ray imaging of bacterial cells: nano-diffraction and ptychographic reconstruction"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS