Now showing 1 - 9 of 9
  • 2014Review
    [["dc.bibliographiccitation.firstpage","527"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Wiley Interdisciplinary Reviews - RNA"],["dc.bibliographiccitation.lastpage","535"],["dc.bibliographiccitation.volume","5"],["dc.contributor.author","Smorag, Lukasz"],["dc.contributor.author","Xu, X."],["dc.contributor.author","Engel, Wolfgang"],["dc.contributor.author","Pantakani, Dasaradha Venkata Krishna"],["dc.date.accessioned","2018-11-07T09:38:38Z"],["dc.date.available","2018-11-07T09:38:38Z"],["dc.date.issued","2014"],["dc.description.abstract","RNA-binding proteins play an important role in the regulation of gene expression by modulating translation and localization of specific messenger RNAs (mRNAs) during early development and gametogenesis. The DAZ (Deleted in Azoospermia) family of proteins, which includes DAZ, DAZL, and BOULE, are germ cell-specific RNA-binding proteins that are implicated in translational regulation of several transcripts. Of particular importance is DAZL, which is present in vertebrates and arose from the duplication of the ancestral BOULE during evolution. Identification of DAZL target mRNAs and characterization of the RNA-binding sequence through in vitro binding assays and crystallographic studies revealed that DAZL binds to GUU triplets in the 3' untranslated region of target mRNAs. Although there is compelling evidence for the role of DAZL in translation stimulation of target mRNAs, recent studies indicate that DAZL can also function in translational repression and transport of specific mRNAs. Furthermore, apart from the well-characterized function of DAZL in gametogenesis, recent data suggest its role in early embryonic development and differentiation of pluripotent stem cells toward functional gametes. In light of the mounting evidence for the role of DAZL in various cellular and developmental processes, we summarize the currently characterized biological functions of DAZL in RNA biology and development. (C) 2014 John Wiley & Sons, Ltd."],["dc.identifier.doi","10.1002/wrna.1228"],["dc.identifier.isi","000337627700006"],["dc.identifier.pmid","24715697"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/33108"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.relation.issn","1757-7012"],["dc.relation.issn","1757-7004"],["dc.title","The roles of DAZL in RNA biology and development"],["dc.type","review"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2011Journal Article
    [["dc.bibliographiccitation.firstpage","99"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","European Journal of Neurology"],["dc.bibliographiccitation.lastpage","105"],["dc.bibliographiccitation.volume","18"],["dc.contributor.author","Klimpe, Sven"],["dc.contributor.author","Zibat, Arne"],["dc.contributor.author","Zechner, Ulrich"],["dc.contributor.author","Wellek, B."],["dc.contributor.author","Shoukier, Moneef"],["dc.contributor.author","Sauter, Simone M."],["dc.contributor.author","Pantakani, Dasaradha Venkata Krishna"],["dc.contributor.author","Mannan, Ashraf U."],["dc.date.accessioned","2018-11-07T09:01:10Z"],["dc.date.available","2018-11-07T09:01:10Z"],["dc.date.issued","2011"],["dc.description.abstract","Background: Mutations in the SPG4/SPAST gene are the most common cause for hereditary spastic paraplegia (HSP). The splice-site mutations make a significant contribution to HSP and account for 17.4% of all types of mutations and 30.8% of point mutations in the SPAST gene. However, only few studies with limited molecular approach were conducted to investigate and decipher the role of SPAST splice-site mutations in HSP. Methods: A reverse transcriptase-polymerase chain reaction (RT-PCR) analysis and quantitative allele-specific expression assay were performed. Results: We have characterized the consequence of two novel splice-site mutations (c.1493 + 1G > A and c.1414-1G > A) in the SPAST gene in two different families with pure HSP. The RT-PCR analysis revealed that both spastin mutations are indeed splice-site mutations and cause skipping of exon 12. Furthermore, RT-PCR data suggested that these splice-site mutations may cause leaky splicing. By means of a quantitative allele-specific expression assay, we could confirm that both splice-site mutations cause leaky splicing, as the relative expression of the exon 12-skipped transcript was reduced (21.1 +/- 3.6 compared to expected 50%). Conclusions: Our finding supports a \"threshold-effect-model\" for functional spastin in HSP. A higher level (78.8 +/- 3.9%) of functional spastin than the expected ratio of 50% owing to leaky splicing might cause late age at onset of HSP. Remarkably, we could show that a quantitative allele-specific expression assay is a simple and effective tool to evaluate the role of most types of spastin splice-site mutations in HSP."],["dc.description.sponsorship","Deutsche Forschungsgemeinschaft; Institute internal fund"],["dc.identifier.doi","10.1111/j.1468-1331.2010.03079.x"],["dc.identifier.isi","000285356300015"],["dc.identifier.pmid","20491894"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/24351"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell Publishing, Inc"],["dc.relation.issn","1351-5101"],["dc.title","Evaluating the effect of spastin splice mutations by quantitative allele-specific expression assay"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2013Journal Article
    [["dc.bibliographiccitation.firstpage","425"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms"],["dc.bibliographiccitation.lastpage","435"],["dc.bibliographiccitation.volume","1829"],["dc.contributor.author","Xu, X."],["dc.contributor.author","Tan, Xiaoying"],["dc.contributor.author","Lin, Qiong"],["dc.contributor.author","Schmidt, Bernhard"],["dc.contributor.author","Engel, Wolfgang"],["dc.contributor.author","Pantakani, Dasaradha Venkata Krishna"],["dc.date.accessioned","2018-11-07T09:25:29Z"],["dc.date.available","2018-11-07T09:25:29Z"],["dc.date.issued","2013"],["dc.description.abstract","Dazl (deleted in azoospermia-like) is an RNA binding protein that is important for germ cell differentiation in vertebrates. In the present study, we report the identification of a novel Dazl isoform (Dazl_Delta 8) that results from alternative splicing of exon8 of mouse Dazl. We observed the expression of Dazl_Delta 8 in various pluripotent cell types, but not in somatic cells. Furthermore, the Dazl_Delta 8 splice variant was expressed along with the full-length isoform of Dazl (Dazl_FL) throughout male germ-cell development and in the ovary. Sub-cellular localization studies of Dazl_Delta 8 revealed a diffused cytoplasmic and large granular pattern, which is similar to the localization patterns of Dazl_FL protein. In contrast to the well documented translation stimulation function in germ cells, overexpression and downregulation studies of Dazl isoforms (Dazl_FL and Dazl_Delta 8) revealed a role for Dazl in the negative translational regulation, of Mvh, a known target of Dazl, as well as Oct3/4 and Sox2 in embryonic stem cells (ESCs). In line with these observations, a luciferase reporter assay with the 3'UTRs of Oct3/4 and Mvh confirmed the translational repressive role of Dazl isoforms in ESCs but not in germ cells derived cell line GC-1. Further, we identified several putative target mRNAs of Dazl_FL and Dazl_Delta 8 in ESCs through RNA-binding immunoprecipitation followed by whole genome transcriptome analysis. Collectively, our results show a translation repression function of Dazl in pluripotent stem cells. (C) 2013 Elsevier B.V. All rights reserved."],["dc.identifier.doi","10.1016/j.bbagrm.2012.12.010"],["dc.identifier.isi","000318134500001"],["dc.identifier.pmid","23298641"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/30075"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Elsevier Science Bv"],["dc.relation.issn","1874-9399"],["dc.title","Mouse Dazl and its novel splice variant functions in translational repression of target mRNAs in embryonic stem cells"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2008Journal Article
    [["dc.bibliographiccitation.firstpage","268"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Clinical Genetics"],["dc.bibliographiccitation.lastpage","272"],["dc.bibliographiccitation.volume","73"],["dc.contributor.author","Pantakani, Dasaradha Venkata Krishna"],["dc.contributor.author","Zechner, Ulrich"],["dc.contributor.author","Arygriou, L."],["dc.contributor.author","Pauli, Silke"],["dc.contributor.author","Sauter, Simone M."],["dc.contributor.author","Mannan, Ashraf U."],["dc.date.accessioned","2018-11-07T11:17:25Z"],["dc.date.available","2018-11-07T11:17:25Z"],["dc.date.issued","2008"],["dc.description.abstract","The SPG4 gene is frequently mutated in autosomal dominant form of hereditary spastic paraplegia (HSP). We report that the compound heterozygous sequence variants S44L, a known polymorphism, and c.1687G > A, a novel mutation in SPG4 cause a severe form of HSP in a patient. The family members carrying solely c.1687G > A mutation are asymptomatic for HSP. The reverse transcriptase-polymerase chain reaction (RT-PCR) analysis revealed that the c.1687G > A mutation is a splice site mutation and causes skipping of the exon 15 of spastin. Furthermore, quantification of RT-PCR products by sequencing and quantification of allele-specific expression by pyrosequencing assay revealed that c.1687G > A is a leaky or hypomorphic splice site mutation. At the protein level, c.1687G > A mutation in SPG4 leads to E563K substitution. In ex vivo study, about 10% of cells expressing E563K mutant spastin showed filamentous expression pattern, suggesting a hypomorphic effect at the protein level. Collectively, our results suggest that S44L in association with c.1687G > A (E563K) drops the functional level of spastin below a threshold limit sufficient to manifest HSP."],["dc.identifier.doi","10.1111/j.1399-0004.2007.00953.x"],["dc.identifier.isi","000252929000012"],["dc.identifier.pmid","18190593"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/54802"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Blackwell Publishing"],["dc.relation.issn","0009-9163"],["dc.title","Compound heterozygosity in the SPG4 gene causes hereditary spastic paraplegia"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2008Journal Article
    [["dc.bibliographiccitation.firstpage","613"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Journal of Neurochemistry"],["dc.bibliographiccitation.lastpage","624"],["dc.bibliographiccitation.volume","106"],["dc.contributor.author","Pantakani, Dasaradha Venkata Krishna"],["dc.contributor.author","Swapna, Lakshmipuram S."],["dc.contributor.author","Srinivasan, Narayanaswamy"],["dc.contributor.author","Mannan, Ashraf U."],["dc.date.accessioned","2018-11-07T11:13:37Z"],["dc.date.available","2018-11-07T11:13:37Z"],["dc.date.issued","2008"],["dc.description.abstract","Spastin, a member of the ATPases associated with various cellular activities (AAA) family of proteins, is the most frequently mutated in hereditary spastic paraplegia. The defining feature of the AAA proteins is a structurally conserved AAA domain which assembles into an oligomer. By chemical cross-linking and gel filtration chromatography, we show that spastin oligomerizes into a hexamer. Furthermore, to gain a comprehensive overview of the oligomeric structure of spastin, we generated a structural model of the AAA domain of spastin using template structure of VPS4B and p97/VCP. The generated model of spastin provided us with a framework to classify the identified missense mutations in the AAA domain from hereditary spastic paraplegia patients into different structural/functional groups. Finally, through co-localization studies in mammalian cells, we show that E442Q mutant spastin acts in a dominant negative fashion and causes redistribution of both wild-type spastin monomer and spastin interacting protein, RTN1 into filamentous microtubule bundles."],["dc.identifier.doi","10.1111/j.1471-4159.2008.05414.x"],["dc.identifier.isi","000257708000011"],["dc.identifier.pmid","18410514"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/53940"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Blackwell Publishing"],["dc.relation.issn","0022-3042"],["dc.title","Spastin oligomerizes into a hexamer and the mutant spastin (E442Q) redistribute the wild-type spastin into filamentous microtubule"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2013Journal Article
    [["dc.bibliographiccitation.firstpage","1045"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Stem Cell Research"],["dc.bibliographiccitation.lastpage","1059"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Tan, Xiaoying"],["dc.contributor.author","Xu, X."],["dc.contributor.author","Elkenani, Manar"],["dc.contributor.author","Smorag, Lukasz"],["dc.contributor.author","Zechner, Ulrich"],["dc.contributor.author","Nolte, Jessica"],["dc.contributor.author","Engel, Wolfgang"],["dc.contributor.author","Pantakani, Dasaradha Venkata Krishna"],["dc.date.accessioned","2018-11-07T09:17:54Z"],["dc.date.available","2018-11-07T09:17:54Z"],["dc.date.issued","2013"],["dc.description.abstract","Pluripotency is maintained by both known and unknown transcriptional regulatory networks. In the present study, we have identified Zfp819, a KRAB-zinc finger protein, as a novel pluripotency-related factor and characterized its role in pluripotent stem cells. We show that Zfp819 is expressed highly in various types of pluripotent stem cells but not in their differentiated counterparts. We identified the presence of non-canonical nuclear localization signals in particular zinc finger motifs and identified them as responsible for the nuclear localization of Zfp819. Analysis of the Zfp819 promoter region revealed the presence of a transcriptionally active chromatin signature. Moreover, we confirmed the binding of pluripotency-related factors, Oct4, Sox2, and Nanog to the distal promoter region of Zfp819, indicating that the expression of this gene is regulated by a pluripotency transcription factor network. We found that the expression of endogenous retroviral elements (ERVs) such as Intracisternal A Particle (IAP) retrotransposons, Long Interspersed Nuclear Elements (LINE1), and Short Interspersed Nuclear Elements (SINE B1) is significantly upregulated in Zfp819-knockdown (Zfp819_KD) cells. In line with the activation of ERVs, we observed the occurrence of spontaneous DNA damage in Zfp819_KD cells. Furthermore, we tested whether Zfp819 can interact with KAP1, a KRAB-associated protein with a transcriptional repression function, and found the interaction between these two proteins in both in vitro and in vivo experiments. The challenging of Zfp819_KD cells with DNA damaging agent revealed that these cells are inefficient in repairing the damaged DNA, as cells showed presence of gamma H2A.X foci for a prolonged time. Collectively, our study identified Zfp819 as a novel pluripotency-related factor and unveiled its function in genomic integrity maintenance mechanisms of mouse embryonic stem cells. (C) 2013 Elsevier B.V. All rights reserved."],["dc.identifier.doi","10.1016/j.scr.2013.07.006"],["dc.identifier.isi","327905300008"],["dc.identifier.pmid","23954693"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/28283"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Elsevier Science Bv"],["dc.relation.issn","1876-7753"],["dc.relation.issn","1873-5061"],["dc.title","Zfp819, a novel KRAB-zinc finger protein, interacts with KAP1 and functions in genomic integrity maintenance of mouse embryonic stem cells"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2011Journal Article
    [["dc.bibliographiccitation.firstpage","166"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","MHR Basic science of reproductive medicine"],["dc.bibliographiccitation.lastpage","174"],["dc.bibliographiccitation.volume","17"],["dc.contributor.author","Khromov, Tatjana"],["dc.contributor.author","Pantakani, Dasaradha Venkata Krishna"],["dc.contributor.author","Nolte, Jessica"],["dc.contributor.author","Wolf, Marieke"],["dc.contributor.author","Dressel, Ralf"],["dc.contributor.author","Engel, Wolfgang"],["dc.contributor.author","Zechner, Ulrich"],["dc.date.accessioned","2018-11-07T08:58:57Z"],["dc.date.available","2018-11-07T08:58:57Z"],["dc.date.issued","2011"],["dc.description.abstract","We previously reported the generation of multipotent adult germline stem cells (maGSCs) from spermatogonial stem cells (SSCs) isolated from adult mouse testis. In a later study, we substantiated the pluripotency of maGSCs by demonstrating their close similarity to pluripotent male embryonic stem cells (ESCs) at the epigenetic level of global and gene-specific DNA methylation. Here, we extended the comparative epigenetic analysis of maGSCs and male ESCs by investigating the second main epigenetic modification in mammals, i.e. global and gene-specific modifications of histones (H3K4 trimethylation, H3K9 acetylation, H3K9 trimethylation and H3K27 trimethylation). Using immunofluorescence staining, flow cytometry and western blot analysis, we show that maGSCs are very similar to male ESCs with regard to global levels and nuclear distribution patterns of these modifications. Chromatin immunoprecipitation real-time PCR analysis of these modifications at the gene-specific level further revealed modification patterns of the pluripotency marker genes Oct4, Sox2 and Nanog in maGSCs that are nearly identical to those of male ESCs. These genes were enriched for activating histone modifications including H3K4me3 and H3K9ac and depleted of repressive histone modifications including H3K27me3 and H3K9me3. In addition, Hoxa11, a key regulator of early embryonic development showed the ESC-typical bivalent chromatin conformation with enrichment of both the activating H3K4me3 and the repressive H3K27me3 modification also in maGSCs. Collectively, our results demonstrate that maGSCs also closely resemble ESCs with regard to their chromatin state and further evidence their pluripotent nature."],["dc.identifier.doi","10.1093/molehr/gaq085"],["dc.identifier.isi","000287257000003"],["dc.identifier.pmid","20935159"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/23771"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Oxford Univ Press"],["dc.relation.issn","1360-9947"],["dc.title","Global and gene-specific histone modification profiles of mouse multipotent adult germline stem cells"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2016Journal Article
    [["dc.bibliographiccitation.firstpage","1664"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Journal of Investigative Dermatology"],["dc.bibliographiccitation.lastpage","1671"],["dc.bibliographiccitation.volume","136"],["dc.contributor.author","Elkenani, Manar"],["dc.contributor.author","Nyamsuren, Gunsmaa"],["dc.contributor.author","Raju, Priyadharsini"],["dc.contributor.author","Liakath-Ali, Kifayathullah"],["dc.contributor.author","Hamdaoui, Aicha"],["dc.contributor.author","Kata, Aleksandra"],["dc.contributor.author","Dressel, Ralf"],["dc.contributor.author","Klonisch, Thomas"],["dc.contributor.author","Watt, Fiona M."],["dc.contributor.author","Engel, Wolfgang"],["dc.contributor.author","Thliveris, James A."],["dc.contributor.author","Pantakani, Dasaradha Venkata Krishna"],["dc.contributor.author","Adham, Ibrahim M."],["dc.date.accessioned","2018-11-07T10:11:05Z"],["dc.date.available","2018-11-07T10:11:05Z"],["dc.date.issued","2016"],["dc.description.abstract","The depletion of evolutionarily conserved pelota protein causes impaired differentiation of embryonic and spermatogonial stem cells. In this study, we show that temporal deletion of pelota protein before epidermal barrier acquisition leads to neonatal lethality due to perturbations in permeability barrier formation. Further analysis indicated that this phenotype is a result of failed processing of profilaggrin into filaggrin monomers, which promotes the formation of a protective epidermal layer. Molecular analyses showed that pelota protein negatively regulates the activities of bone morphogenetic protein and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathways in the epidermis. To address whether elevated activities of bone morphogenetic protein and PI3K/AKT signaling pathways were the cause for the perturbed epidermal barrier in Pelo-deficient mice, we made use of organotypic cultures of skin explants from control and mutant embryos at embryonic day 15.5. Inhibition of PI3K/AKT signaling did not significantly affect the bone morphogenetic protein activity. However, inhibition of bone morphogenetic protein signaling caused a significant attenuation of PI3K/AKT activity in mutant skin and, more interestingly, the restoration of profilaggrin processing and normal epidermal barrier function. Therefore, increased activity of the PI3K/AKT signaling pathway in Pelo-deficient skin might conflict with the dephosphorylation of profilaggrin and thereby affect its proper processing into filaggrin monomers and ultimately the epidermal differentiation."],["dc.description.sponsorship","Medical Research Council [G1100073, MR/L022699/1]"],["dc.identifier.doi","10.1016/j.jid.2016.04.020"],["dc.identifier.isi","000380585200092"],["dc.identifier.pmid","27164299"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/39976"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Elsevier Science Inc"],["dc.relation.issn","1523-1747"],["dc.relation.issn","0022-202X"],["dc.title","Pelota Regulates Epidermal Differentiation by Modulating BMP and PI3K/AKT Signaling Pathways"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2009Journal Article
    [["dc.bibliographiccitation.firstpage","187"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","European Journal of Human Genetics"],["dc.bibliographiccitation.lastpage","194"],["dc.bibliographiccitation.volume","17"],["dc.contributor.author","Shoukier, Moneef"],["dc.contributor.author","Neesen, Juergen"],["dc.contributor.author","Sauter, Simone M."],["dc.contributor.author","Argyriou, Loukas"],["dc.contributor.author","Doerwald, Nadine"],["dc.contributor.author","Pantakani, Dasaradha Venkata Krishna"],["dc.contributor.author","Mannan, Ashraf U."],["dc.date.accessioned","2018-11-07T08:32:59Z"],["dc.date.available","2018-11-07T08:32:59Z"],["dc.date.issued","2009"],["dc.description.abstract","The SPAST gene encoding for spastin plays a central role in the genetically heterogeneous group of diseases termed hereditary spastic paraplegia (HSP). In this study, we attempted to expand and refine the genetic and phenotypic characteristics of SPAST associated HSP by examining a large cohort of HSP patients/families. Screening of 200 unrelated HSP cases for mutations in the SPAST gene led to detection of 57 mutations (28.5%), of which 47 were distinct and 29 were novel mutations. The distribution analysis of known SPAST mutations over the structural domains of spastin led to the identification of several regions where the mutations were clustered. Mainly, the clustering was observed in the AAA (ATPases associated with diverse cellular activities) domain; however, significant clustering was also observed in the MIT (microtubule interacting and trafficking), MTBD (microtubule-binding domain) and an N-terminal region (228-269 residues). Furthermore, we used a previously generated structural model of spastin as a framework to classify the missense mutations in the AAA domain from the HSP patients into different structural/functional groups. Our data also suggest a tentative genotype-phenotype correlation and indicate that the missense mutations could cause an earlier onset of the disease."],["dc.identifier.doi","10.1038/ejhg.2008.147"],["dc.identifier.isi","000262499600010"],["dc.identifier.pmid","18701882"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/17465"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Nature Publishing Group"],["dc.relation.issn","1018-4813"],["dc.title","Expansion of mutation spectrum, determination of mutation cluster regions and predictive structural classification of SPAST mutations in hereditary spastic paraplegia"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS