Now showing 1 - 2 of 2
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Pooryasin, Atefeh"],["dc.contributor.author","Maglione, Marta"],["dc.contributor.author","Schubert, Marco"],["dc.contributor.author","Matkovic-Rachid, Tanja"],["dc.contributor.author","Hasheminasab, Sayed-mohammad"],["dc.contributor.author","Pech, Ulrike"],["dc.contributor.author","Fiala, André"],["dc.contributor.author","Mielke, Thorsten"],["dc.contributor.author","Sigrist, Stephan J."],["dc.date.accessioned","2021-06-01T09:41:40Z"],["dc.date.available","2021-06-01T09:41:40Z"],["dc.date.issued","2021"],["dc.description.abstract","Abstract The physical distance between presynaptic Ca 2+ channels and the Ca 2+ sensors triggering the release of neurotransmitter-containing vesicles regulates short-term plasticity (STP). While STP is highly diversified across synapse types, the computational and behavioral relevance of this diversity remains unclear. In the Drosophila brain, at nanoscale level, we can distinguish distinct coupling distances between Ca 2+ channels and the (m)unc13 family priming factors, Unc13A and Unc13B. Importantly, coupling distance defines release components with distinct STP characteristics. Here, we show that while Unc13A and Unc13B both contribute to synaptic signalling, they play distinct roles in neural decoding of olfactory information at excitatory projection neuron (ePN) output synapses. Unc13A clusters closer to Ca 2+ channels than Unc13B, specifically promoting fast phasic signal transfer. Reduction of Unc13A in ePNs attenuates responses to both aversive and appetitive stimuli, while reduction of Unc13B provokes a general shift towards appetitive values. Collectively, we provide direct genetic evidence that release components of distinct nanoscopic coupling distances differentially control STP to play distinct roles in neural decoding of sensory information."],["dc.identifier.doi","10.1038/s41467-021-22180-6"],["dc.identifier.pmid","33771998"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/84997"],["dc.identifier.url","https://for2705.de/literature/publications/38"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.relation","FOR 2705: Dissection of a Brain Circuit: Structure, Plasticity and Behavioral Function of the Drosophila Mushroom Body"],["dc.relation","FOR 2705 | TP 5: Postsynaptic receptor plasticity and transsynaptic communication in storage of memory components in the mushroom bodies"],["dc.relation.eissn","2041-1723"],["dc.relation.workinggroup","RG Fiala"],["dc.relation.workinggroup","RG Sigrist (Genetics)"],["dc.rights","CC BY 4.0"],["dc.title","Unc13A and Unc13B contribute to the decoding of distinct sensory information in Drosophila"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2014Journal Article
    [["dc.bibliographiccitation.artnumber","174"],["dc.bibliographiccitation.journal","Frontiers in Behavioral Neuroscience"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Vasmer, David"],["dc.contributor.author","Pooryasin, Atefeh"],["dc.contributor.author","Riemensperger, Thomas"],["dc.contributor.author","Fiala, Andre"],["dc.date.accessioned","2018-11-07T09:40:14Z"],["dc.date.available","2018-11-07T09:40:14Z"],["dc.date.issued","2014"],["dc.description.abstract","Drosophila represents a model organism to analyze neuronal mechanisms underlying learning and memory. Kenyon cells of the Drosophila mushroom body are required for associative odor learning and memory retrieval. But is the mushroom body sufficient to acquire and retrieve an associative memory? To answer this question we have conceived an experimental approach to bypass olfactory sensory input and to thermogenetically activate sparse and random ensembles of Kenyon cells directly. We found that if the artifical activation of Kenyon cell ensembles coincides with a salient, aversive stimulus learning was induced. The animals adjusted their behavior in a subsequent test situation and actively avoided reactivation of these Kenyon cells. Our results show that Kenyon cell activity in coincidence with a salient aversive stimulus can suffice to form an associative memory. Memory retrieval is characterized by a closed feedback loop between a behavioral action and the reactivation of sparse ensembles of Kenyon cells."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2014"],["dc.identifier.doi","10.3389/fnbeh.2014.00174"],["dc.identifier.isi","000335956300001"],["dc.identifier.pmid","24860455"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/10184"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/33463"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Frontiers Research Foundation"],["dc.relation.issn","1662-5153"],["dc.rights","CC BY 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/3.0"],["dc.title","Induction of aversive learning through thermogenetic activation of Kenyon cell ensembles in Drosophila"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS