Now showing 1 - 3 of 3
  • 2018Journal Article Research Paper
    [["dc.bibliographiccitation.issue","15"],["dc.bibliographiccitation.journal","The EMBO Journal"],["dc.bibliographiccitation.volume","37"],["dc.contributor.author","Truckenbrodt, Sven"],["dc.contributor.author","Viplav, Abhiyan"],["dc.contributor.author","Jähne, Sebastian"],["dc.contributor.author","Vogts, Angela"],["dc.contributor.author","Denker, Annette"],["dc.contributor.author","Wildhagen, Hanna"],["dc.contributor.author","Fornasiero, Eugenio F"],["dc.contributor.author","Rizzoli, Silvio O"],["dc.date.accessioned","2020-12-10T18:42:37Z"],["dc.date.available","2020-12-10T18:42:37Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.15252/embj.201798044"],["dc.identifier.pmid","29950309"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15710"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/78022"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/34"],["dc.identifier.url","https://sfb1286.uni-goettingen.de/literature/publications/38"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.intern","Merged from goescholar"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P09: Proteinsortierung in der Synapse: Prinzipien und molekulare Organisation"],["dc.relation","SFB 1286: Quantitative Synaptologie"],["dc.relation","SFB 1286 | A03: Dynamische Analyse der Remodellierung der extrazellulären Matrix (ECM) als Mechanismus der Synapsenorganisation und Plastizität"],["dc.relation.workinggroup","RG Rizzoli (Quantitative Synaptology in Space and Time)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Newly produced synaptic vesicle proteins are preferentially used in synaptic transmission"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","108841"],["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","Cell Reports"],["dc.bibliographiccitation.volume","34"],["dc.contributor.author","Jähne, Sebastian"],["dc.contributor.author","Mikulasch, Fabian"],["dc.contributor.author","Heuer, Helge G.H."],["dc.contributor.author","Truckenbrodt, Sven"],["dc.contributor.author","Agüi-Gonzalez, Paola"],["dc.contributor.author","Grewe, Katharina"],["dc.contributor.author","Vogts, Angela"],["dc.contributor.author","Rizzoli, Silvio O."],["dc.contributor.author","Priesemann, Viola"],["dc.date.accessioned","2021-04-14T08:29:03Z"],["dc.date.available","2021-04-14T08:29:03Z"],["dc.date.issued","2021"],["dc.description.abstract","Synaptic transmission relies on the continual exocytosis and recycling of synaptic vesicles. Aged vesicle proteins are prevented from recycling and are eventually degraded. This implies that active synapses would lose vesicles and vesicle-associated proteins over time, unless the supply correlates to activity, to balance the losses. To test this hypothesis, we first model the quantitative relation between presynaptic spike rate and vesicle turnover. The model predicts that the vesicle supply needs to increase with the spike rate. To follow up this prediction, we measure protein turnover in individual synapses of cultured hippocampal neurons by combining nanoscale secondary ion mass spectrometry (nanoSIMS) and fluorescence microscopy. We find that turnover correlates with activity at the single-synapse level, but not with other parameters such as the abundance of synaptic vesicles or postsynaptic density proteins. We therefore suggest that the supply of newly synthesized proteins to synapses is closely connected to synaptic activity."],["dc.identifier.doi","10.1016/j.celrep.2021.108841"],["dc.identifier.pmid","33730575"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/82779"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/244"],["dc.identifier.url","https://sfb1286.uni-goettingen.de/literature/publications/117"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1286: Quantitative Synaptologie"],["dc.relation","SFB 1286 | A03: Dynamische Analyse der Remodellierung der extrazellulären Matrix (ECM) als Mechanismus der Synapsenorganisation und Plastizität"],["dc.relation.issn","2211-1247"],["dc.relation.workinggroup","RG Priesemann (Physics, Complex Systems & Neural Networks)"],["dc.relation.workinggroup","RG Rizzoli (Quantitative Synaptology in Space and Time)"],["dc.rights","CC BY-NC-ND 4.0"],["dc.title","Presynaptic activity and protein turnover are correlated at the single-synapse level"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2017Journal Article
    [["dc.bibliographiccitation.artnumber","020901"],["dc.bibliographiccitation.firstpage","020901"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Neurophotonics"],["dc.bibliographiccitation.volume","4"],["dc.contributor.author","Richter, Katharina N."],["dc.contributor.author","Rizzoli, Silvio O."],["dc.contributor.author","Jähne, Sebastian"],["dc.contributor.author","Vogts, Angela"],["dc.contributor.author","Lovric, Jelena"],["dc.date.accessioned","2020-12-10T18:36:36Z"],["dc.date.available","2020-12-10T18:36:36Z"],["dc.date.issued","2017"],["dc.description.abstract","Investigating the detailed substructure of the cell is beyond the ability of conventional optical microscopy. Electron microscopy, therefore, has been the only option for such studies for several decades. The recent implementation of several super-resolution optical microscopy techniques has rendered the investigation of cellular substructure easier and more efficient. Nevertheless, optical microscopy only provides an image of the present structure of the cell, without any information on its long-temporal changes. These can be investigated by combining super-resolution optics with a nonoptical imaging technique, nanoscale secondary ion mass spectrometry, which investigates the isotopic composition of the samples. The resulting technique, combined isotopic and optical nanoscopy, enables the investigation of both the structure and the \"history\" of the cellular elements. The age and the turnover of cellular organelles can be read by isotopic imaging, while the structure can be analyzed by optical (fluorescence) approaches. We present these technologies, and we discuss their implementation for the study of biological samples. We conclude that, albeit complex, this type of technology is reliable enough for mass application to cell biology."],["dc.identifier.doi","10.1117/1.NPh.4.2.020901"],["dc.identifier.issn","2329-423X"],["dc.identifier.pmid","28466025"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14911"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/76685"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.rights","CC BY-NC-SA 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-sa/3.0"],["dc.title","Review of combined isotopic and optical nanoscopy"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC