Now showing 1 - 6 of 6
  • 2022Journal Article
    [["dc.bibliographiccitation.firstpage","1072"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Nature Methods"],["dc.bibliographiccitation.lastpage","1075"],["dc.bibliographiccitation.volume","19"],["dc.contributor.author","Ostersehlt, Lynn M."],["dc.contributor.author","Jans, Daniel C."],["dc.contributor.author","Wittek, Anna"],["dc.contributor.author","Keller-Findeisen, Jan"],["dc.contributor.author","Inamdar, Kaushik"],["dc.contributor.author","Sahl, Steffen J."],["dc.contributor.author","Hell, Stefan W."],["dc.contributor.author","Jakobs, Stefan"],["dc.date.accessioned","2022-10-04T10:21:07Z"],["dc.date.available","2022-10-04T10:21:07Z"],["dc.date.issued","2022"],["dc.description.abstract","Abstract\n MINimal fluorescence photon FLUXes (MINFLUX) nanoscopy, providing photon-efficient fluorophore localizations, has brought about three-dimensional resolution at nanometer scales. However, by using an intrinsic on–off switching process for single fluorophore separation, initial MINFLUX implementations have been limited to two color channels. Here we show that MINFLUX can be effectively combined with sequentially multiplexed DNA-based labeling (DNA-PAINT), expanding MINFLUX nanoscopy to multiple molecular targets. Our method is exemplified with three-color recordings of mitochondria in human cells."],["dc.identifier.doi","10.1038/s41592-022-01577-1"],["dc.identifier.pii","1577"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/114334"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-600"],["dc.relation.eissn","1548-7105"],["dc.relation.issn","1548-7091"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","DNA-PAINT MINFLUX nanoscopy"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2016Journal Article Discussion
    [["dc.bibliographiccitation.artnumber","527a"],["dc.bibliographiccitation.issue","6285"],["dc.bibliographiccitation.journal","Science"],["dc.bibliographiccitation.volume","352"],["dc.contributor.author","Sahl, Steffen J."],["dc.contributor.author","Balzarotti, Francisco"],["dc.contributor.author","Keller-Findeisen, Jan"],["dc.contributor.author","Leutenegger, Marcel"],["dc.contributor.author","Westphal, Volker"],["dc.contributor.author","Egner, Alexander"],["dc.contributor.author","Lavoie-Cardinal, Flavie"],["dc.contributor.author","Chmyrov, Andriy"],["dc.contributor.author","Grotjohann, Tim"],["dc.contributor.author","Jakobs, Stefan"],["dc.date.accessioned","2017-09-07T11:54:33Z"],["dc.date.available","2017-09-07T11:54:33Z"],["dc.date.issued","2016"],["dc.description.abstract","Li et al. (Research Articles, 28 August 2015, aab3500) purport to present solutions to longstanding challenges in live-cell microscopy, reporting relatively fast acquisition times in conjunction with improved image resolution. We question the methods' reliability to visualize specimen features at sub-100-nanometer scales, because the mandatory mathematical processing of the recorded data leads to artifacts that are either difficult or impossible to disentangle from real features. We are also concerned about the chosen approach of subjectively comparing images from different super-resolution methods, as opposed to using quantitative measures."],["dc.identifier.doi","10.1126/science.aad7983"],["dc.identifier.gro","3141696"],["dc.identifier.isi","000374998600028"],["dc.identifier.pmid","27126030"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/58"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1095-9203"],["dc.relation.issn","0036-8075"],["dc.title","Comment on \"Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics\""],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","letter_note"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2018Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","E8047"],["dc.bibliographiccitation.issue","34"],["dc.bibliographiccitation.journal","Proceedings of the National Academy of Sciences of the United States of America"],["dc.bibliographiccitation.lastpage","E8056"],["dc.bibliographiccitation.volume","115"],["dc.contributor.author","Masch, Jennifer-Magdalena"],["dc.contributor.author","Steffens, Heinz"],["dc.contributor.author","Fischer, Joachim"],["dc.contributor.author","Engelhardt, Johann"],["dc.contributor.author","Hubrich, Jasmine"],["dc.contributor.author","Keller-Findeisen, Jan"],["dc.contributor.author","D'Este, Elisa"],["dc.contributor.author","Urban, Nicolai T."],["dc.contributor.author","Grant, Seth G. N."],["dc.contributor.author","Sahl, Steffen J."],["dc.contributor.author","Kamin, Dirk"],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2018-11-16T10:48:20Z"],["dc.date.accessioned","2021-10-27T13:21:10Z"],["dc.date.available","2018-11-16T10:48:20Z"],["dc.date.available","2021-10-27T13:21:10Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1073/pnas.1807104115"],["dc.identifier.pmid","30082388"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15631"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/91999"],["dc.identifier.url","https://sfb1286.uni-goettingen.de/literature/publications/37"],["dc.language.iso","en"],["dc.notes.intern","Migrated from goescholar"],["dc.relation","SFB 1286: Quantitative Synaptologie"],["dc.relation","SFB 1286 | A07: Der Aufbau des synaptischen Cytoskeletts"],["dc.relation.orgunit","Universitätsmedizin Göttingen"],["dc.relation.workinggroup","RG D’Este"],["dc.relation.workinggroup","RG Hell"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Robust nanoscopy of a synaptic protein in living mice by organic-fluorophore labeling"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2022Journal Article
    [["dc.bibliographiccitation.artnumber","e2201861119"],["dc.bibliographiccitation.issue","29"],["dc.bibliographiccitation.journal","Proceedings of the National Academy of Sciences"],["dc.bibliographiccitation.volume","119"],["dc.contributor.author","Mihaila, Tiberiu S."],["dc.contributor.author","Bäte, Carina"],["dc.contributor.author","Ostersehlt, Lynn M."],["dc.contributor.author","Pape, Jasmin K."],["dc.contributor.author","Keller-Findeisen, Jan"],["dc.contributor.author","Sahl, Steffen J."],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2022-09-01T09:50:23Z"],["dc.date.available","2022-09-01T09:50:23Z"],["dc.date.issued","2022"],["dc.description.abstract","With few-nanometer resolution recently achieved by a new generation of fluorescence nanoscopes (MINFLUX and MINSTED), the size of the tags used to label proteins will increasingly limit the ability to dissect nanoscopic biological structures. Bioorthogonal (click) chemical groups are powerful tools for the specific detection of biomolecules. Through the introduction of an engineered aminoacyl–tRNA synthetase/tRNA pair (tRNA: transfer ribonucleic acid), genetic code expansion allows for the site-specific introduction of amino acids with “clickable” side chains into proteins of interest. Well-defined label positions and the subnanometer scale of the protein modification provide unique advantages over other labeling approaches for imaging at molecular-scale resolution. We report that, by pairing a new N-terminally optimized pyrrolysyl–tRNA synthetase (chPylRS\n 2020\n ) with a previously engineered orthogonal tRNA, clickable amino acids are incorporated with improved efficiency into bacteria and into mammalian cells. The resulting enhanced genetic code expansion machinery was used to label β-actin in U2OS cell filopodia for MINFLUX imaging with minimal separation of fluorophores from the protein backbone. Selected data were found to be consistent with previously reported high-resolution information from cryoelectron tomography about the cross-sectional filament bundling architecture. Our study underscores the need for further improvements to the degree of labeling with minimal-offset methods in order to fully exploit molecular-scale optical three-dimensional resolution."],["dc.description.sponsorship"," Fulbright Association 100010629"],["dc.identifier.doi","10.1073/pnas.2201861119"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/113693"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-597"],["dc.relation.eissn","1091-6490"],["dc.relation.issn","0027-8424"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-nd/4.0/"],["dc.title","Enhanced incorporation of subnanometer tags into cellular proteins for fluorescence nanoscopy via optimized genetic code expansion"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2020Book Chapter
    [["dc.bibliographiccitation.firstpage","205"],["dc.bibliographiccitation.lastpage","226"],["dc.bibliographiccitation.seriesnr","134"],["dc.contributor.author","Keller-Findeisen, Jan"],["dc.contributor.author","Sahl, Steffen J."],["dc.contributor.author","Hell, Stefan W."],["dc.contributor.editor","Salditt, Tim"],["dc.contributor.editor","Egner, Alexander"],["dc.contributor.editor","Luke, D. Russell"],["dc.date.accessioned","2022-03-01T11:47:04Z"],["dc.date.available","2022-03-01T11:47:04Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1007/978-3-030-34413-9_7"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/103904"],["dc.notes.intern","DOI-Import GROB-531"],["dc.publisher","Springer International Publishing"],["dc.publisher.place","Cham"],["dc.relation.crisseries","Topics in Applied Physics"],["dc.relation.eisbn","978-3-030-34413-9"],["dc.relation.isbn","978-3-030-34412-2"],["dc.relation.ispartof","Nanoscale Photonic Imaging"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Quantifying Molecule Numbers in STED/RESOLFT Fluorescence Nanoscopy"],["dc.type","book_chapter"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2017Journal Article
    [["dc.bibliographiccitation.artnumber","44619"],["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.journal","Scientific Reports"],["dc.bibliographiccitation.lastpage","9"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Chmyrov, Andriy"],["dc.contributor.author","Leuschner, Ivo"],["dc.contributor.author","Grotjohann, Tim"],["dc.contributor.author","Schoenle, Andreas"],["dc.contributor.author","Keller-Findeisen, Jan"],["dc.contributor.author","Kastrup, Lars"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Donnert, Gerald"],["dc.contributor.author","Sahl, Steffen J."],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2017-09-07T11:50:39Z"],["dc.date.available","2017-09-07T11:50:39Z"],["dc.date.issued","2017"],["dc.description.abstract","Fluorescence microscopy is rapidly turning into nanoscopy. Among the various nanoscopy methods, the STED/RESOLFT super-resolution family has recently been expanded to image even large fields of view within a few seconds. This advance relies on using light patterns featuring substantial arrays of intensity minima for discerning features by switching their fluorophores between ‘on’ and ‘off’ states of fluorescence. Here we show that splitting the light with a grating and recombining it in the focal plane of the objective lens renders arrays of minima with wavelength-independent periodicity. This colour-independent creation of periodic patterns facilitates coaligned on- and off-switching and readout with combinations chosen from a range of wavelengths. Applying up to three such periodic patterns on the switchable fluorescent proteins Dreiklang and rsCherryRev1.4, we demonstrate highly parallelized, multicolour RESOLFT nanoscopy in living cells for ~100 × 100 μm2 fields of view. Individual keratin filaments were rendered at a FWHM of ~60–80 nm, with effective resolution for the filaments of ~80–100 nm. We discuss the impact of novel image reconstruction algorithms featuring background elimination by spatial bandpass filtering, as well as strategies that incorporate complete image formation models."],["dc.identifier.doi","10.1038/srep44619"],["dc.identifier.gro","3145910"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14935"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/3644"],["dc.language.iso","en"],["dc.notes.intern","lifescience"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.relation.issn","2045-2322"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Achromatic light patterning and improved image reconstruction for parallelized RESOLFT nanoscopy"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI