Now showing 1 - 3 of 3
  • 2018Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","E8047"],["dc.bibliographiccitation.issue","34"],["dc.bibliographiccitation.journal","Proceedings of the National Academy of Sciences of the United States of America"],["dc.bibliographiccitation.lastpage","E8056"],["dc.bibliographiccitation.volume","115"],["dc.contributor.author","Masch, Jennifer-Magdalena"],["dc.contributor.author","Steffens, Heinz"],["dc.contributor.author","Fischer, Joachim"],["dc.contributor.author","Engelhardt, Johann"],["dc.contributor.author","Hubrich, Jasmine"],["dc.contributor.author","Keller-Findeisen, Jan"],["dc.contributor.author","D'Este, Elisa"],["dc.contributor.author","Urban, Nicolai T."],["dc.contributor.author","Grant, Seth G. N."],["dc.contributor.author","Sahl, Steffen J."],["dc.contributor.author","Kamin, Dirk"],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2018-11-16T10:48:20Z"],["dc.date.accessioned","2021-10-27T13:21:10Z"],["dc.date.available","2018-11-16T10:48:20Z"],["dc.date.available","2021-10-27T13:21:10Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1073/pnas.1807104115"],["dc.identifier.pmid","30082388"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15631"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/91999"],["dc.identifier.url","https://sfb1286.uni-goettingen.de/literature/publications/37"],["dc.language.iso","en"],["dc.notes.intern","Migrated from goescholar"],["dc.relation","SFB 1286: Quantitative Synaptologie"],["dc.relation","SFB 1286 | A07: Der Aufbau des synaptischen Cytoskeletts"],["dc.relation.orgunit","Universitätsmedizin Göttingen"],["dc.relation.workinggroup","RG D’Este"],["dc.relation.workinggroup","RG Hell"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Robust nanoscopy of a synaptic protein in living mice by organic-fluorophore labeling"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2017Journal Article
    [["dc.bibliographiccitation.artnumber","577"],["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.journal","Nature communications"],["dc.bibliographiccitation.lastpage","9"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Richardson, Douglas S."],["dc.contributor.author","Gregor, Carola"],["dc.contributor.author","Winter, Franziska R."],["dc.contributor.author","Urban, Nicolai T."],["dc.contributor.author","Sahl, Steffen J."],["dc.contributor.author","Willig, Katrin I."],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2018-01-17T13:31:10Z"],["dc.date.available","2018-01-17T13:31:10Z"],["dc.date.issued","2017"],["dc.description.abstract","Fluorescence-based biosensors have become essential tools for modern biology, allowing real-time monitoring of biological processes within living cells. Intracellular fluorescent pH probes comprise one of the most widely used families of biosensors in microscopy. One key application of pH probes has been to monitor the acidification of vesicles during endocytosis, an essential function that aids in cargo sorting and degradation. Prior to the development of super-resolution fluorescence microscopy (nanoscopy), investigation of endosomal dynamics in live cells remained difficult as these structures lie at or below the ~250 nm diffraction limit of light microscopy. Therefore, to aid in investigations of pH dynamics during endocytosis at the nanoscale, we have specifically designed a family of ratiometric endosomal pH probes for use in live-cell STED nanoscopy.Ratiometric fluorescent pH probes are useful tools to monitor acidification of vesicles during endocytosis, but the size of vesicles is below the diffraction limit. Here the authors develop a family of ratiometric pH sensors for use in STED super-resolution microscopy, and optimize their delivery to endosomes."],["dc.identifier.doi","10.1038/s41467-017-00606-4"],["dc.identifier.pmid","28924139"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16496"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11717"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation.eissn","2041-1723"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","SRpHi ratiometric pH biosensors for super-resolution microscopy"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2017Journal Article
    [["dc.bibliographiccitation.artnumber","44619"],["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.journal","Scientific Reports"],["dc.bibliographiccitation.lastpage","9"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Chmyrov, Andriy"],["dc.contributor.author","Leuschner, Ivo"],["dc.contributor.author","Grotjohann, Tim"],["dc.contributor.author","Schoenle, Andreas"],["dc.contributor.author","Keller-Findeisen, Jan"],["dc.contributor.author","Kastrup, Lars"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Donnert, Gerald"],["dc.contributor.author","Sahl, Steffen J."],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2017-09-07T11:50:39Z"],["dc.date.available","2017-09-07T11:50:39Z"],["dc.date.issued","2017"],["dc.description.abstract","Fluorescence microscopy is rapidly turning into nanoscopy. Among the various nanoscopy methods, the STED/RESOLFT super-resolution family has recently been expanded to image even large fields of view within a few seconds. This advance relies on using light patterns featuring substantial arrays of intensity minima for discerning features by switching their fluorophores between ‘on’ and ‘off’ states of fluorescence. Here we show that splitting the light with a grating and recombining it in the focal plane of the objective lens renders arrays of minima with wavelength-independent periodicity. This colour-independent creation of periodic patterns facilitates coaligned on- and off-switching and readout with combinations chosen from a range of wavelengths. Applying up to three such periodic patterns on the switchable fluorescent proteins Dreiklang and rsCherryRev1.4, we demonstrate highly parallelized, multicolour RESOLFT nanoscopy in living cells for ~100 × 100 μm2 fields of view. Individual keratin filaments were rendered at a FWHM of ~60–80 nm, with effective resolution for the filaments of ~80–100 nm. We discuss the impact of novel image reconstruction algorithms featuring background elimination by spatial bandpass filtering, as well as strategies that incorporate complete image formation models."],["dc.identifier.doi","10.1038/srep44619"],["dc.identifier.gro","3145910"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14935"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/3644"],["dc.language.iso","en"],["dc.notes.intern","lifescience"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.relation.issn","2045-2322"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Achromatic light patterning and improved image reconstruction for parallelized RESOLFT nanoscopy"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI