Now showing 1 - 4 of 4
  • 2020Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","108292"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Cell Reports"],["dc.bibliographiccitation.volume","33"],["dc.contributor.author","Gibhardt, Christine Silvia"],["dc.contributor.author","Cappello, Sabrina"],["dc.contributor.author","Bhardwaj, Rajesh"],["dc.contributor.author","Schober, Romana"],["dc.contributor.author","Kirsch, Sonja Agnes"],["dc.contributor.author","Bonilla del Rio, Zuriñe"],["dc.contributor.author","Gahbauer, Stefan"],["dc.contributor.author","Bochicchio, Anna"],["dc.contributor.author","Sumanska, Magdalena"],["dc.contributor.author","Ickes, Christian"],["dc.contributor.author","Stejerean-Todoran, Ioana"],["dc.contributor.author","Mitkovski, Miso"],["dc.contributor.author","Alansary, Dalia"],["dc.contributor.author","Zhang, Xin"],["dc.contributor.author","Revazian, Aram"],["dc.contributor.author","Fahrner, Marc"],["dc.contributor.author","Lunz, Victoria"],["dc.contributor.author","Frischauf, Irene"],["dc.contributor.author","Luo, Ting"],["dc.contributor.author","Ezerina, Daria"],["dc.contributor.author","Messens, Joris"],["dc.contributor.author","Belousov, Vsevolod Vadimovich"],["dc.contributor.author","Hoth, Markus"],["dc.contributor.author","Böckmann, Rainer Arnold"],["dc.contributor.author","Hediger, Matthias Albrecht"],["dc.contributor.author","Schindl, Rainer"],["dc.contributor.author","Bogeski, Ivan"],["dc.date.accessioned","2021-04-14T08:32:05Z"],["dc.date.available","2021-04-14T08:32:05Z"],["dc.date.issued","2020"],["dc.description.abstract","Store-operated calcium entry (SOCE) through STIM-gated ORAI channels governs vital cellular functions. In this context, SOCE controls cellular redox signaling and is itself regulated by redox modifications. However, the molecular mechanisms underlying this calcium-redox interplay and the functional outcomes are not fully understood. Here, we examine the role of STIM2 in SOCE redox regulation. Redox proteomics identify cysteine 313 as the main redox sensor of STIM2 in vitro and in vivo. Oxidative stress suppresses SOCE and calcium currents in cells overexpressing STIM2 and ORAI1, an effect that is abolished by mutation of cysteine 313. FLIM and FRET microscopy, together with MD simulations, indicate that oxidative modifications of cysteine 313 alter STIM2 activation dynamics and thereby hinder STIM2-mediated gating of ORAI1. In summary, this study establishes STIM2-controlled redox regulation of SOCE as a mechanism that affects several calcium-regulated physiological processes, as well as stress-induced pathologies."],["dc.identifier.doi","10.1016/j.celrep.2020.108292"],["dc.identifier.pmid","33086068"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/83805"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/128"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P17: Die Rolle mitochondrialer Kontaktstellen im Rahmen tumorrelevanter Calcium- und Redox-Signalwege"],["dc.relation.issn","2211-1247"],["dc.relation.workinggroup","RG Bogeski"],["dc.rights","CC BY 4.0"],["dc.title","Oxidative Stress-Induced STIM2 Cysteine Modifications Suppress Store-Operated Calcium Entry"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2019Journal Article
    [["dc.bibliographiccitation.journal","Frontiers in Molecular Neuroscience"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Akula, Asha Kiran"],["dc.contributor.author","Zhang, Xin"],["dc.contributor.author","Viotti, Julio S."],["dc.contributor.author","Nestvogel, Dennis"],["dc.contributor.author","Rhee, Jeong-Seop"],["dc.contributor.author","Ebrecht, Rene"],["dc.contributor.author","Reim, Kerstin"],["dc.contributor.author","Wouters, Fred"],["dc.contributor.author","Liepold, Thomas"],["dc.contributor.author","Jahn, Olaf"],["dc.contributor.author","Bogeski, Ivan"],["dc.contributor.author","Dresbach, Thomas"],["dc.date.accessioned","2020-12-10T18:44:35Z"],["dc.date.available","2020-12-10T18:44:35Z"],["dc.date.issued","2019"],["dc.description.abstract","Neurotransmitter release is mediated by an evolutionarily conserved machinery. The synaptic vesicle (SV) associated protein Mover/TPRGL/SVAP30 does not occur in all species and all synapses. Little is known about its molecular properties and how it may interact with the conserved components of the presynaptic machinery. Here, we show by deletion analysis that regions required for homomeric interaction of Mover are distributed across the entire molecule, including N-terminal, central and C-terminal regions. The same regions are also required for the accumulation of Mover in presynaptic terminals of cultured neurons. Mutating two phosphorylation sites in N-terminal regions did not affect these properties. In contrast, a point mutation in the predicted Calmodulin (CaM) binding sequence of Mover abolished both homomeric interaction and presynaptic targeting. We show that this sequence indeed binds Calmodulin, and that recombinant Mover increases Calmodulin signaling upon heterologous expression. Our data suggest that presynaptic accumulation of Mover requires homomeric interaction mediated by regions distributed across large areas of the protein, and corroborate the hypothesis that Mover functionally interacts with Calmodulin signaling."],["dc.identifier.doi","10.3389/fnmol.2019.00249"],["dc.identifier.eissn","1662-5099"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16645"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/78512"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.intern","Merged from goescholar"],["dc.publisher","Frontiers Media S.A."],["dc.relation.eissn","1662-5099"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","The Calmodulin Binding Region of the Synaptic Vesicle Protein Mover Is Required for Homomeric Interaction and Presynaptic Targeting"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2019Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","e100871"],["dc.bibliographiccitation.issue","15"],["dc.bibliographiccitation.journal","The EMBO Journal"],["dc.bibliographiccitation.volume","38"],["dc.contributor.author","Zhang, Xin"],["dc.contributor.author","Gibhardt, Christine S"],["dc.contributor.author","Will, Thorsten"],["dc.contributor.author","Stanisz, Hedwig"],["dc.contributor.author","Körbel, Christina"],["dc.contributor.author","Mitkovski, Miso"],["dc.contributor.author","Stejerean, Ioana"],["dc.contributor.author","Cappello, Sabrina"],["dc.contributor.author","Pacheu-Grau, David"],["dc.contributor.author","Dudek, Jan"],["dc.contributor.author","Tahbaz, Nasser"],["dc.contributor.author","Mina, Lucas"],["dc.contributor.author","Simmen, Thomas"],["dc.contributor.author","Laschke, Matthias W"],["dc.contributor.author","Menger, Michael D"],["dc.contributor.author","Schön, Michael P"],["dc.contributor.author","Helms, Volkhard"],["dc.contributor.author","Niemeyer, Barbara A"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Vultur, Adina"],["dc.contributor.author","Bogeski, Ivan"],["dc.date.accessioned","2020-04-29T13:50:36Z"],["dc.date.available","2020-04-29T13:50:36Z"],["dc.date.issued","2019"],["dc.description.abstract","Reactive oxygen species (ROS) are emerging as important regulators of cancer growth and metastatic spread. However, how cells integrate redox signals to affect cancer progression is not fully understood. Mitochondria are cellular redox hubs, which are highly regulated by interactions with neighboring organelles. Here, we investigated how ROS at the endoplasmic reticulum (ER)-mitochondria interface are generated and translated to affect melanoma outcome. We show that TMX1 and TMX3 oxidoreductases, which promote ER-mitochondria communication, are upregulated in melanoma cells and patient samples. TMX knockdown altered mitochondrial organization, enhanced bioenergetics, and elevated mitochondrial- and NOX4-derived ROS. The TMX-knockdown-induced oxidative stress suppressed melanoma proliferation, migration, and xenograft tumor growth by inhibiting NFAT1. Furthermore, we identified NFAT1-positive and NFAT1-negative melanoma subgroups, wherein NFAT1 expression correlates with melanoma stage and metastatic potential. Integrative bioinformatics revealed that genes coding for mitochondrial- and redox-related proteins are under NFAT1 control and indicated that TMX1, TMX3, and NFAT1 are associated with poor disease outcome. Our study unravels a novel redox-controlled ER-mitochondria-NFAT1 signaling loop that regulates melanoma pathobiology and provides biomarkers indicative of aggressive disease."],["dc.identifier.doi","10.15252/embj.2018100871"],["dc.identifier.pmid","31304984"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16534"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/64486"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/80"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P13: Protein Transport über den mitochondrialen Carrier Transportweg"],["dc.relation","SFB 1190 | P17: Die Rolle mitochondrialer Kontaktstellen im Rahmen tumorrelevanter Calcium- und Redox-Signalwege"],["dc.relation.eissn","1460-2075"],["dc.relation.issn","0261-4189"],["dc.relation.issn","1460-2075"],["dc.relation.workinggroup","RG Bogeski"],["dc.rights","CC BY-NC-ND 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-nd/4.0"],["dc.title","Redox signals at the ER-mitochondria interface control melanoma progression"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2022Journal Article
    [["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","EMBO reports"],["dc.bibliographiccitation.volume","23"],["dc.contributor.affiliation","Stejerean‐Todoran, Ioana; 1\r\nMolecular Physiology, Department of Cardiovascular Physiology, University Medical Center\r\nGeorg‐August‐University\r\nGöttingen Germany"],["dc.contributor.affiliation","Zimmermann, Katharina; 2\r\nBiophysics, CIPMM\r\nSaarland University\r\nHomburg Germany"],["dc.contributor.affiliation","Gibhardt, Christine S; 1\r\nMolecular Physiology, Department of Cardiovascular Physiology, University Medical Center\r\nGeorg‐August‐University\r\nGöttingen Germany"],["dc.contributor.affiliation","Vultur, Adina; 1\r\nMolecular Physiology, Department of Cardiovascular Physiology, University Medical Center\r\nGeorg‐August‐University\r\nGöttingen Germany"],["dc.contributor.affiliation","Ickes, Christian; 1\r\nMolecular Physiology, Department of Cardiovascular Physiology, University Medical Center\r\nGeorg‐August‐University\r\nGöttingen Germany"],["dc.contributor.affiliation","Shannan, Batool; 3\r\nThe Wistar Institute\r\nMelanoma Research Center\r\nPhiladelphia PA USA"],["dc.contributor.affiliation","Bonilla del Rio, Zuriñe; 1\r\nMolecular Physiology, Department of Cardiovascular Physiology, University Medical Center\r\nGeorg‐August‐University\r\nGöttingen Germany"],["dc.contributor.affiliation","Wölling, Anna; 5\r\nDepartment of Dermatology, Venereology and Allergology, University Medical Center\r\nGeorg‐August‐University\r\nGöttingen Germany"],["dc.contributor.affiliation","Cappello, Sabrina; 1\r\nMolecular Physiology, Department of Cardiovascular Physiology, University Medical Center\r\nGeorg‐August‐University\r\nGöttingen Germany"],["dc.contributor.affiliation","Sung, Hsu‐Min; 1\r\nMolecular Physiology, Department of Cardiovascular Physiology, University Medical Center\r\nGeorg‐August‐University\r\nGöttingen Germany"],["dc.contributor.affiliation","Shumanska, Magdalena; 1\r\nMolecular Physiology, Department of Cardiovascular Physiology, University Medical Center\r\nGeorg‐August‐University\r\nGöttingen Germany"],["dc.contributor.affiliation","Zhang, Xin; 1\r\nMolecular Physiology, Department of Cardiovascular Physiology, University Medical Center\r\nGeorg‐August‐University\r\nGöttingen Germany"],["dc.contributor.affiliation","Nanadikar, Maithily; 6\r\nDepartment of Cardiovascular Physiology, University Medical Center Göttingen\r\nGeorg‐August‐University\r\nGöttingen Germany"],["dc.contributor.affiliation","Latif, Muhammad U; 7\r\nDepartment of Gastroenterology, Gastrointestinal Oncology and Endocrinology\r\nUniversity Medical Center Göttingen\r\nGottingen Germany"],["dc.contributor.affiliation","Wittek, Anna; 8\r\nDepartment of NanoBiophotonics\r\nMax Planck Institute for Multidisciplinary Sciences\r\nGöttingen Germany"],["dc.contributor.affiliation","Lange, Felix; 8\r\nDepartment of NanoBiophotonics\r\nMax Planck Institute for Multidisciplinary Sciences\r\nGöttingen Germany"],["dc.contributor.affiliation","Waters, Andrea; 3\r\nThe Wistar Institute\r\nMelanoma Research Center\r\nPhiladelphia PA USA"],["dc.contributor.affiliation","Brafford, Patricia; 3\r\nThe Wistar Institute\r\nMelanoma Research Center\r\nPhiladelphia PA USA"],["dc.contributor.affiliation","Wilting, Jörg; 10\r\nDepartment of Anatomy and Cell Biology, University Medical Center\r\nGeorg‐August‐University\r\nGöttingen Germany"],["dc.contributor.affiliation","Urlaub, Henning; 11\r\nBioanalytical Mass Spectrometry Group\r\nMax Planck Institute for Multidisciplinary Sciences\r\nGöttingen Germany"],["dc.contributor.affiliation","Katschinski, Dörthe M; 6\r\nDepartment of Cardiovascular Physiology, University Medical Center Göttingen\r\nGeorg‐August‐University\r\nGöttingen Germany"],["dc.contributor.affiliation","Rehling, Peter; 13\r\nDepartment of Cellular Biochemistry\r\nUniversity Medical Center Göttingen, GZMB\r\nGöttingen Germany"],["dc.contributor.affiliation","Lenz, Christof; 11\r\nBioanalytical Mass Spectrometry Group\r\nMax Planck Institute for Multidisciplinary Sciences\r\nGöttingen Germany"],["dc.contributor.affiliation","Jakobs, Stefan; 8\r\nDepartment of NanoBiophotonics\r\nMax Planck Institute for Multidisciplinary Sciences\r\nGöttingen Germany"],["dc.contributor.affiliation","Ellenrieder, Volker; 7\r\nDepartment of Gastroenterology, Gastrointestinal Oncology and Endocrinology\r\nUniversity Medical Center Göttingen\r\nGottingen Germany"],["dc.contributor.affiliation","Roesch, Alexander; 4\r\nDepartment of Dermatology, University Hospital Essen, West German Cancer Center\r\nUniversity Duisburg‐Essen and the German Cancer Consortium (DKTK)"],["dc.contributor.affiliation","Schön, Michael P; 5\r\nDepartment of Dermatology, Venereology and Allergology, University Medical Center\r\nGeorg‐August‐University\r\nGöttingen Germany"],["dc.contributor.affiliation","Herlyn, Meenhard; 3\r\nThe Wistar Institute\r\nMelanoma Research Center\r\nPhiladelphia PA USA"],["dc.contributor.affiliation","Stanisz, Hedwig; 5\r\nDepartment of Dermatology, Venereology and Allergology, University Medical Center\r\nGeorg‐August‐University\r\nGöttingen Germany"],["dc.contributor.author","Stejerean‐Todoran, Ioana"],["dc.contributor.author","Zimmermann, Katharina"],["dc.contributor.author","Gibhardt, Christine S"],["dc.contributor.author","Vultur, Adina"],["dc.contributor.author","Ickes, Christian"],["dc.contributor.author","Shannan, Batool"],["dc.contributor.author","Bonilla del Rio, Zuriñe"],["dc.contributor.author","Wölling, Anna"],["dc.contributor.author","Cappello, Sabrina"],["dc.contributor.author","Sung, Hsu‐Min"],["dc.contributor.author","Shumanska, Magdalena"],["dc.contributor.author","Zhang, Xin"],["dc.contributor.author","Nanadikar, Maithily"],["dc.contributor.author","Latif, Muhammad U"],["dc.contributor.author","Wittek, Anna"],["dc.contributor.author","Lange, Felix"],["dc.contributor.author","Waters, Andrea"],["dc.contributor.author","Brafford, Patricia"],["dc.contributor.author","Wilting, Jörg"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Katschinski, Dörthe M"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Lenz, Christof"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Ellenrieder, Volker"],["dc.contributor.author","Roesch, Alexander"],["dc.contributor.author","Schön, Michael P"],["dc.contributor.author","Herlyn, Meenhard"],["dc.contributor.author","Stanisz, Hedwig"],["dc.contributor.author","Bogeski, Ivan"],["dc.date.accessioned","2022-11-28T09:42:28Z"],["dc.date.available","2022-11-28T09:42:28Z"],["dc.date.issued","2022"],["dc.date.updated","2022-11-27T10:11:15Z"],["dc.description.abstract","Abstract\r\nMelanoma is the deadliest of skin cancers and has a high tendency to metastasize to distant organs. Calcium and metabolic signals contribute to melanoma invasiveness; however, the underlying molecular details are elusive. The MCU complex is a major route for calcium into the mitochondrial matrix but whether MCU affects melanoma pathobiology was not understood. Here, we show that MCUA expression correlates with melanoma patient survival and is decreased in BRAF kinase inhibitor‐resistant melanomas. Knockdown (KD) of MCUA suppresses melanoma cell growth and stimulates migration and invasion. In melanoma xenografts, MCUA_KD reduces tumor volumes but promotes lung metastases. Proteomic analyses and protein microarrays identify pathways that link MCUA and melanoma cell phenotype and suggest a major role for redox regulation. Antioxidants enhance melanoma cell migration, while prooxidants diminish the MCUA_KD‐induced invasive phenotype. Furthermore, MCUA_KD increases melanoma cell resistance to immunotherapies and ferroptosis. Collectively, we demonstrate that MCUA controls melanoma aggressive behavior and therapeutic sensitivity. Manipulations of mitochondrial calcium and redox homeostasis, in combination with current therapies, should be considered in treating advanced melanoma."],["dc.description.abstract","Synopsis\r\n\r\n\r\n\r\nimage\r\n\r\n\r\n\r\nThe MCU channel complex is the main route for Ca2+ into the mitochondrial matrix. MCU controls cellular redox state, disease aggressiveness and therapeutic response and is a favorable prognostic marker in melanoma.\r\n\r\nMCU controls mitochondrial Ca2+ dynamics, production of ROS and ATP in melanoma cells.\r\nMCU downregulation hinders melanoma cell growth and stimulates cellular motility and metastasis.\r\nMelanoma cells develop increased resistance to immunotherapies and ferroptosis inducers upon MCU downregulation."],["dc.description.abstract","The MCU channel complex is the main route for Ca2+ into the mitochondrial matrix. MCU controls cellular redox state, disease aggressiveness and therapeutic response and is a favorable prognostic marker in melanoma.\r\nimage"],["dc.description.sponsorship","Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659"],["dc.description.sponsorship","Saarland University http://dx.doi.org/10.13039/501100005690"],["dc.description.sponsorship","Open Access funding enabled and organized by Projekt DEAL"],["dc.identifier.doi","10.15252/embr.202254746"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/117305"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-600"],["dc.relation.eissn","1469-3178"],["dc.relation.issn","1469-221X"],["dc.rights","This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited."],["dc.title","MCU controls melanoma progression through a redox‐controlled phenotype switch"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI