Now showing 1 - 9 of 9
  • 2017Journal Article
    [["dc.bibliographiccitation.firstpage","2004"],["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","EMBO reports"],["dc.bibliographiccitation.lastpage","2014"],["dc.bibliographiccitation.volume","18"],["dc.contributor.author","Warda, Ahmed S"],["dc.contributor.author","Kretschmer, Jens"],["dc.contributor.author","Hackert, Philipp"],["dc.contributor.author","Lenz, Christof"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Höbartner, Claudia"],["dc.contributor.author","Sloan, Katherine E"],["dc.contributor.author","Bohnsack, Markus T"],["dc.date.accessioned","2020-12-10T18:42:38Z"],["dc.date.available","2020-12-10T18:42:38Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.15252/embr.201744940"],["dc.identifier.eissn","1469-3178"],["dc.identifier.issn","1469-221X"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/78032"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Human METTL16 is a N 6 ‐methyladenosine (m 6 A) methyltransferase that targets pre‐mRNAs and various non‐coding RNAs"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2015Journal Article
    [["dc.bibliographiccitation.firstpage","1532"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","RNA"],["dc.bibliographiccitation.lastpage","1543"],["dc.bibliographiccitation.volume","21"],["dc.contributor.author","Haag, Sara"],["dc.contributor.author","Warda, Ahmed S."],["dc.contributor.author","Kretschmer, Jens"],["dc.contributor.author","Guennigmann, Manuel A."],["dc.contributor.author","Hoebartner, Claudia"],["dc.contributor.author","Bohnsack, Markus T."],["dc.date.accessioned","2018-11-07T09:52:51Z"],["dc.date.available","2018-11-07T09:52:51Z"],["dc.date.issued","2015"],["dc.description.abstract","Many cellular RNAs require modification of specific residues for their biogenesis, structure, and function. 5-methylcytosine (m(5)C) is a common chemical modification in DNA and RNA but in contrast to the DNA modifying enzymes, only little is known about the methyltransferases that establish m(5)C modifications in RNA. The putative RNA methyltransferase NSUN6 belongs to the family of Nol1/Nop2/SUN domain (NSUN) proteins, but so far its cellular function has remained unknown. To reveal the target spectrum of human NSUN6, we applied UV crosslinking and analysis of cDNA (CRAC) as well as chemical crosslinking with 5-azacytidine. We found that human NSUN6 is associated with tRNAs and acts as a tRNA methyltransferase. Furthermore, we uncovered tRNACys and tRNAThr as RNA substrates of NSUN6 and identified the cytosine C72 at the 3' end of the tRNA acceptor stem as the target nucleoside. Interestingly, target recognition in vitro depends on the presence of the 3'-CCA tail. Together with the finding that NSUN6 localizes to the cytoplasm and largely colocalizes with marker proteins for the Golgi apparatus and pericentriolar matrix, our data suggest that NSUN6 modifies tRNAs in a late step in their biogenesis."],["dc.identifier.doi","10.1261/rna.051524.115"],["dc.identifier.isi","000359996100002"],["dc.identifier.pmid","26160102"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/36208"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Cold Spring Harbor Lab Press, Publications Dept"],["dc.relation.issn","1469-9001"],["dc.relation.issn","1355-8382"],["dc.title","NSUN6 is a human RNA methyltransferase that catalyzes formation of m(5)C72 in specific tRNAs"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2018Journal Article
    [["dc.bibliographiccitation.firstpage","1339"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","RNA"],["dc.bibliographiccitation.lastpage","1350"],["dc.bibliographiccitation.volume","24"],["dc.contributor.author","Kretschmer, Jens"],["dc.contributor.author","Rao, Harita"],["dc.contributor.author","Hackert, Philipp"],["dc.contributor.author","Sloan, Katherine E."],["dc.contributor.author","Höbartner, Claudia"],["dc.contributor.author","Bohnsack, Markus T."],["dc.date.accessioned","2020-12-10T18:41:55Z"],["dc.date.available","2020-12-10T18:41:55Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1261/rna.064238.117"],["dc.identifier.eissn","1469-9001"],["dc.identifier.issn","1355-8382"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/77730"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","The m 6 A reader protein YTHDC2 interacts with the small ribosomal subunit and the 5′–3′ exoribonuclease XRN1"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2017Book Chapter
    [["dc.bibliographiccitation.firstpage","259"],["dc.bibliographiccitation.lastpage","268"],["dc.bibliographiccitation.seriesnr","1562"],["dc.contributor.author","Haag, Sara"],["dc.contributor.author","Sloan, Katherine E."],["dc.contributor.author","Höbartner, Claudia"],["dc.contributor.author","Bohnsack, Markus T."],["dc.contributor.editor","Lusser, Alexandra"],["dc.date.accessioned","2021-06-02T10:44:25Z"],["dc.date.available","2021-06-02T10:44:25Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1007/978-1-4939-6807-7_17"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/87031"],["dc.notes.intern","DOI-Import GROB-425"],["dc.publisher","Springer New York"],["dc.publisher.place","New York, NY"],["dc.relation.crisseries","Methods in Molecular Biology"],["dc.relation.eisbn","978-1-4939-6807-7"],["dc.relation.isbn","978-1-4939-6805-3"],["dc.relation.ispartof","Methods in Molecular Biology"],["dc.relation.ispartof","RNA Methylation : Methods and Protocols"],["dc.relation.ispartofseries","Methods in Molecular Biology; 1562"],["dc.title","In Vitro Assays for RNA Methyltransferase Activity"],["dc.type","book_chapter"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2022Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","209"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","13"],["dc.contributor.author","Kleiber, Nicole"],["dc.contributor.author","Lemus-Diaz, Nicolas"],["dc.contributor.author","Stiller, Carina"],["dc.contributor.author","Heinrichs, Marleen"],["dc.contributor.author","Mai, Mandy Mong-Quyen"],["dc.contributor.author","Hackert, Philipp"],["dc.contributor.author","Richter-Dennerlein, Ricarda"],["dc.contributor.author","Höbartner, Claudia"],["dc.contributor.author","Bohnsack, Katherine E."],["dc.contributor.author","Bohnsack, Markus T."],["dc.date.accessioned","2022-02-01T10:31:09Z"],["dc.date.available","2022-02-01T10:31:09Z"],["dc.date.issued","2022"],["dc.description.abstract","Abstract Modified nucleotides in tRNAs are important determinants of folding, structure and function. Here we identify METTL8 as a mitochondrial matrix protein and active RNA methyltransferase responsible for installing m 3 C 32 in the human mitochondrial (mt-)tRNA Thr and mt-tRNA Ser(UCN) . METTL8 crosslinks to the anticodon stem loop (ASL) of many mt-tRNAs in cells, raising the question of how methylation target specificity is achieved. Dissection of mt-tRNA recognition elements revealed U 34 G 35 and t 6 A 37 /(ms 2 )i 6 A 37 , present concomitantly only in the ASLs of the two substrate mt-tRNAs, as key determinants for METTL8-mediated methylation of C 32 . Several lines of evidence demonstrate the influence of U 34 , G 35 , and the m 3 C 32 and t 6 A 37 /(ms 2 )i 6 A 37 modifications in mt-tRNA Thr/Ser(UCN) on the structure of these mt-tRNAs. Although mt-tRNA Thr/Ser(UCN) lacking METTL8-mediated m 3 C 32 are efficiently aminoacylated and associate with mitochondrial ribosomes, mitochondrial translation is mildly impaired by lack of METTL8. Together these results define the cellular targets of METTL8 and shed new light on the role of m 3 C 32 within mt-tRNAs."],["dc.description.sponsorship","Deutsche Forschungsgemeinschaft"],["dc.identifier.doi","10.1038/s41467-021-27905-1"],["dc.identifier.pii","27905"],["dc.identifier.pmid","35017528"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/98794"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/390"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/167"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-517"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P04: Der GET-Rezeptor als ein Eingangstor zum ER und sein Zusammenspiel mit GET bodies"],["dc.relation.eissn","2041-1723"],["dc.relation.workinggroup","RG M. Bohnsack (Molecular Biology)"],["dc.relation.workinggroup","RG Richter-Dennerlein (Mitoribosome Assembly)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","The RNA methyltransferase METTL8 installs m3C32 in mitochondrial tRNAsThr/Ser(UCN) to optimise tRNA structure and mitochondrial translation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2018Journal Article
    [["dc.bibliographiccitation.firstpage","15117"],["dc.bibliographiccitation.issue","46"],["dc.bibliographiccitation.journal","Angewandte Chemie. International Edition"],["dc.bibliographiccitation.lastpage","15121"],["dc.bibliographiccitation.volume","57"],["dc.contributor.author","Sednev, Maksim V."],["dc.contributor.author","Mykhailiuk, Volodymyr"],["dc.contributor.author","Choudhury, Priyanka"],["dc.contributor.author","Halang, Julia"],["dc.contributor.author","Sloan, Katherine E."],["dc.contributor.author","Bohnsack, Markus T."],["dc.contributor.author","Höbartner, Claudia"],["dc.date.accessioned","2020-12-10T14:05:34Z"],["dc.date.available","2020-12-10T14:05:34Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1002/anie.201808745"],["dc.identifier.eissn","1521-3773"],["dc.identifier.issn","1433-7851"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/69578"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","N6‐Methyladenosine‐Sensitive RNA‐Cleaving Deoxyribozymes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2017Journal Article Discussion
    [["dc.bibliographiccitation.firstpage","145"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Cell Cycle"],["dc.bibliographiccitation.lastpage","146"],["dc.bibliographiccitation.volume","16"],["dc.contributor.author","Sloan, Katherine E."],["dc.contributor.author","Hoebartner, Claudia"],["dc.contributor.author","Bohnsack, Markus T."],["dc.date.accessioned","2018-11-07T10:29:17Z"],["dc.date.available","2018-11-07T10:29:17Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1080/15384101.2016.1235860"],["dc.identifier.isi","000392834500005"],["dc.identifier.pmid","27687113"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/43609"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Taylor & Francis Inc"],["dc.relation.issn","1551-4005"],["dc.relation.issn","1538-4101"],["dc.title","How RNA modification allows non-conventional decoding in mitochondria"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.subtype","letter_note"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2016Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","2104"],["dc.bibliographiccitation.issue","19"],["dc.bibliographiccitation.journal","EMBO Journal"],["dc.bibliographiccitation.lastpage","2119"],["dc.bibliographiccitation.volume","35"],["dc.contributor.author","Haag, Sara"],["dc.contributor.author","Sloan, Katherine E."],["dc.contributor.author","Ranjan, Namit"],["dc.contributor.author","Warda, Ahmed S."],["dc.contributor.author","Kretschmer, Jens"],["dc.contributor.author","Blessing, Charlotte"],["dc.contributor.author","Hübner, Benedikt"],["dc.contributor.author","Seikowski, Jan"],["dc.contributor.author","Dennerlein, Sven"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Rodnina, Marina V."],["dc.contributor.author","Höbartner, Claudia"],["dc.contributor.author","Bohnsack, Markus T."],["dc.date.accessioned","2017-09-07T11:44:33Z"],["dc.date.available","2017-09-07T11:44:33Z"],["dc.date.issued","2016"],["dc.description.abstract","Mitochondrial gene expression uses a non-universal genetic code in mammals. Besides reading the conventional AUG codon, mitochondrial (mt-)tRNA(Met) mediates incorporation of methionine on AUA and AUU codons during translation initiation and on AUA codons during elongation. We show that the RNA methyltransferase NSUN3 localises to mitochondria and interacts with mt-tRNA(Met) to methylate cytosine 34 (C34) at the wobble position. NSUN3 specifically recognises the anticodon stem loop (ASL) of the tRNA, explaining why a mutation that compromises ASL basepairing leads to disease. We further identify ALKBH1/ABH1 as the dioxygenase responsible for oxidising m(5)C34 of mt-tRNA(Met) to generate an f(5)C34 modification. In vitro codon recognition studies with mitochondrial translation factors reveal preferential utilisation of m(5)C34 mt-tRNA(Met) in initiation. Depletion of either NSUN3 or ABH1 strongly affects mitochondrial translation in human cells, implying that modifications generated by both enzymes are necessary for mt-tRNA(Met) function. Together, our data reveal how modifications in mt-tRNA(Met) are generated by the sequential action of NSUN3 and ABH1, allowing the single mitochondrial tRNA(Met) to recognise the different codons encoding methionine."],["dc.identifier.doi","10.15252/embj.201694885"],["dc.identifier.gro","3141604"],["dc.identifier.isi","000385707500006"],["dc.identifier.pmid","27497299"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/13845"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/235"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/5"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P13: Protein Transport über den mitochondrialen Carrier Transportweg"],["dc.relation","SFB 1190 | P14: Die Rolle humaner Nucleoporine in Biogenese und Export makromolekularer Komplexe"],["dc.relation","SFB 1190 | P16: Co-translationaler Einbau von Proteinen in die bakterielle Plasmamembran"],["dc.relation.eissn","1460-2075"],["dc.relation.issn","0261-4189"],["dc.relation.workinggroup","RG M. Bohnsack (Molecular Biology)"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.relation.workinggroup","RG Rodnina"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","NSUN3 and ABH1 modify the wobble position of mt-tRNA(Met) to expand codon recognition in mitochondrial translation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2019Journal Article
    [["dc.bibliographiccitation.firstpage","102"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Genes"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Bohnsack, Katherine"],["dc.contributor.author","Höbartner, Claudia"],["dc.contributor.author","Bohnsack, Markus"],["dc.date.accessioned","2020-12-10T18:47:06Z"],["dc.date.available","2020-12-10T18:47:06Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.3390/genes10020102"],["dc.identifier.eissn","2073-4425"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/78643"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Eukaryotic 5-methylcytosine (m5C) RNA Methyltransferases: Mechanisms, Cellular Functions, and Links to Disease"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI