Now showing 1 - 10 of 30
  • 2017Journal Article
    [["dc.bibliographiccitation.firstpage","2004"],["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","EMBO reports"],["dc.bibliographiccitation.lastpage","2014"],["dc.bibliographiccitation.volume","18"],["dc.contributor.author","Warda, Ahmed S"],["dc.contributor.author","Kretschmer, Jens"],["dc.contributor.author","Hackert, Philipp"],["dc.contributor.author","Lenz, Christof"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Höbartner, Claudia"],["dc.contributor.author","Sloan, Katherine E"],["dc.contributor.author","Bohnsack, Markus T"],["dc.date.accessioned","2020-12-10T18:42:38Z"],["dc.date.available","2020-12-10T18:42:38Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.15252/embr.201744940"],["dc.identifier.eissn","1469-3178"],["dc.identifier.issn","1469-221X"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/78032"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Human METTL16 is a N 6 ‐methyladenosine (m 6 A) methyltransferase that targets pre‐mRNAs and various non‐coding RNAs"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2014Journal Article
    [["dc.bibliographiccitation.artnumber","5859"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","5"],["dc.contributor.author","Lin, Chao-Chen"],["dc.contributor.author","Seikowski, Jan"],["dc.contributor.author","Perez-Lara, Angel"],["dc.contributor.author","Jahn, Reinhard"],["dc.contributor.author","Höbartner, Claudia"],["dc.contributor.author","Walla, Peter Jomo"],["dc.date.accessioned","2018-11-07T09:31:47Z"],["dc.date.available","2018-11-07T09:31:47Z"],["dc.date.issued","2014"],["dc.description.abstract","Fast synchronous neurotransmitter release is triggered by calcium that activates synaptotagmin-1 (syt-1), resulting in fusion of synaptic vesicles with the presynaptic membrane. Syt-1 possesses two Ca2+-binding C2 domains that tether membranes via interactions with anionic phospholipids. It is capable of crosslinking membranes and has recently been speculated to trigger fusion by decreasing the gap between them. As quantitative information on membrane gaps is key to understanding general cellular mechanisms, including the role of syt-1, we developed a fluorescence-lifetime based inter-membrane distance ruler using membrane-anchored DNAs of various lengths as calibration standards. Wild-type and mutant data provide evidence that full-length syt-1 indeed regulates membrane gaps: without Ca2+, syt-1 maintains membranes at distances of similar to 7-8 nm. Activation with 100 mu M Ca2+ decreases the distance to similar to 5 nm by binding the C2 domains to opposing membranes, respectively. These values reveal that activated syt-1 adjusts membrane distances to the level that promotes SNARE complex assembly."],["dc.identifier.doi","10.1038/ncomms6859"],["dc.identifier.isi","000347683100001"],["dc.identifier.pmid","25500905"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/31610"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.relation.issn","2041-1723"],["dc.title","Control of membrane gaps by synaptotagmin-Ca2+ measured with a novel membrane distance ruler"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2016Journal Article
    [["dc.bibliographiccitation.firstpage","3720"],["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","Chemistry - A European Journal"],["dc.bibliographiccitation.lastpage","+"],["dc.bibliographiccitation.volume","22"],["dc.contributor.author","Javadi-Zarnaghi, Fatemeh"],["dc.contributor.author","Hoebartner, Claudia"],["dc.date.accessioned","2018-11-07T10:16:55Z"],["dc.date.available","2018-11-07T10:16:55Z"],["dc.date.issued","2016"],["dc.description.abstract","Catalytic DNAs, also known as deoxyribozymes, are of practical value for the synthesis of structurally or topologically complex RNAs, but little is known about the molecular details of DNA catalysis. We have investigated a deoxyribozyme that catalyzes the formation of a specific intramolecular 2,5-phosphodiester bond to produce lariat RNA, which is an important biological intermediate in eukaryotic mRNA splicing. The results of combinatorial mutation interference analysis (CoMA) allowed us to shrink the catalytic core to 70% of its original length and revealed that the essential part of the deoxyribozyme sequence contained more than 50% guanosines. Nucleotide analogue interference mapping (dNAIM) and dimethyl sulfate interference (DMSi) experiments provided atomic details of individual guanosine functional groups. Additional spectroscopic experiments and structural probing data identified conformational changes upon metal-ion binding and catalysis. Overall, this comprehensive analysis of the DNA-catalyzed reaction has provided specific insights into the synthesis of 2,5-branched RNA, and suggested the general features of deoxyribozymes that catalyze nucleic acid ligation reactions."],["dc.identifier.doi","10.1002/chem.201503238"],["dc.identifier.isi","000371741400002"],["dc.identifier.pmid","26525606"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/41133"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-v C H Verlag Gmbh"],["dc.relation.issn","1521-3765"],["dc.relation.issn","0947-6539"],["dc.title","Functional Hallmarks of a Catalytic DNA that Makes Lariat RNA"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2015Journal Article
    [["dc.bibliographiccitation.firstpage","1532"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","RNA"],["dc.bibliographiccitation.lastpage","1543"],["dc.bibliographiccitation.volume","21"],["dc.contributor.author","Haag, Sara"],["dc.contributor.author","Warda, Ahmed S."],["dc.contributor.author","Kretschmer, Jens"],["dc.contributor.author","Guennigmann, Manuel A."],["dc.contributor.author","Hoebartner, Claudia"],["dc.contributor.author","Bohnsack, Markus T."],["dc.date.accessioned","2018-11-07T09:52:51Z"],["dc.date.available","2018-11-07T09:52:51Z"],["dc.date.issued","2015"],["dc.description.abstract","Many cellular RNAs require modification of specific residues for their biogenesis, structure, and function. 5-methylcytosine (m(5)C) is a common chemical modification in DNA and RNA but in contrast to the DNA modifying enzymes, only little is known about the methyltransferases that establish m(5)C modifications in RNA. The putative RNA methyltransferase NSUN6 belongs to the family of Nol1/Nop2/SUN domain (NSUN) proteins, but so far its cellular function has remained unknown. To reveal the target spectrum of human NSUN6, we applied UV crosslinking and analysis of cDNA (CRAC) as well as chemical crosslinking with 5-azacytidine. We found that human NSUN6 is associated with tRNAs and acts as a tRNA methyltransferase. Furthermore, we uncovered tRNACys and tRNAThr as RNA substrates of NSUN6 and identified the cytosine C72 at the 3' end of the tRNA acceptor stem as the target nucleoside. Interestingly, target recognition in vitro depends on the presence of the 3'-CCA tail. Together with the finding that NSUN6 localizes to the cytoplasm and largely colocalizes with marker proteins for the Golgi apparatus and pericentriolar matrix, our data suggest that NSUN6 modifies tRNAs in a late step in their biogenesis."],["dc.identifier.doi","10.1261/rna.051524.115"],["dc.identifier.isi","000359996100002"],["dc.identifier.pmid","26160102"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/36208"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Cold Spring Harbor Lab Press, Publications Dept"],["dc.relation.issn","1469-9001"],["dc.relation.issn","1355-8382"],["dc.title","NSUN6 is a human RNA methyltransferase that catalyzes formation of m(5)C72 in specific tRNAs"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2017Book Chapter
    [["dc.bibliographiccitation.firstpage","37"],["dc.bibliographiccitation.lastpage","58"],["dc.bibliographiccitation.seriesnr","170"],["dc.contributor.author","Javadi-Zarnaghi, Fatemeh"],["dc.contributor.author","Höbartner, Claudia"],["dc.contributor.editor","Seitz, Harald"],["dc.contributor.editor","Stahl, Frank"],["dc.contributor.editor","Walter, Johanna-Gabriela"],["dc.date.accessioned","2021-04-21T11:15:39Z"],["dc.date.available","2021-04-21T11:15:39Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1007/10_2016_59"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/84281"],["dc.relation.crisseries","Advances in Biochemical Engineering/Biotechnology"],["dc.relation.doi","10.1007/978-3-030-29646-9"],["dc.relation.eisbn","978-3-030-29646-9"],["dc.relation.isbn","978-3-030-29645-2"],["dc.relation.ispartof","Catalytically Active Nucleic Acids"],["dc.relation.ispartofseries","Advances in Biochemical Engineering/Biotechnology; 170"],["dc.title","Strategies for Characterization of Enzymatic Nucleic Acids"],["dc.type","book_chapter"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2017Journal Article
    [["dc.bibliographiccitation.firstpage","11992"],["dc.bibliographiccitation.issue","88"],["dc.bibliographiccitation.journal","Chemical Communications"],["dc.bibliographiccitation.lastpage","11995"],["dc.bibliographiccitation.volume","53"],["dc.contributor.author","Carrocci, Tucker J."],["dc.contributor.author","Lohe, Lea"],["dc.contributor.author","Ashton, Matthew J."],["dc.contributor.author","Höbartner, Claudia"],["dc.contributor.author","Hoskins, Aaron A."],["dc.date.accessioned","2020-12-10T18:11:15Z"],["dc.date.available","2020-12-10T18:11:15Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1039/C7CC06703H"],["dc.identifier.eissn","1364-548X"],["dc.identifier.issn","1359-7345"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/73935"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Debranchase-resistant labeling of RNA using the 10DM24 deoxyribozyme and fluorescent modified nucleotides"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2018Journal Article
    [["dc.bibliographiccitation.firstpage","1339"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","RNA"],["dc.bibliographiccitation.lastpage","1350"],["dc.bibliographiccitation.volume","24"],["dc.contributor.author","Kretschmer, Jens"],["dc.contributor.author","Rao, Harita"],["dc.contributor.author","Hackert, Philipp"],["dc.contributor.author","Sloan, Katherine E."],["dc.contributor.author","Höbartner, Claudia"],["dc.contributor.author","Bohnsack, Markus T."],["dc.date.accessioned","2020-12-10T18:41:55Z"],["dc.date.available","2020-12-10T18:41:55Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1261/rna.064238.117"],["dc.identifier.eissn","1469-9001"],["dc.identifier.issn","1355-8382"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/77730"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","The m 6 A reader protein YTHDC2 interacts with the small ribosomal subunit and the 5′–3′ exoribonuclease XRN1"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2019-12-18Journal Article
    [["dc.bibliographiccitation.firstpage","19546"],["dc.bibliographiccitation.issue","50"],["dc.bibliographiccitation.journal","Journal of the American Chemical Society"],["dc.bibliographiccitation.lastpage","19549"],["dc.bibliographiccitation.volume","141"],["dc.contributor.author","Ghaem Maghami, Mohammad"],["dc.contributor.author","Scheitl, Carolin P M"],["dc.contributor.author","Höbartner, Claudia"],["dc.date.accessioned","2020-04-03T14:23:17Z"],["dc.date.available","2020-04-03T14:23:17Z"],["dc.date.issued","2019-12-18"],["dc.description.abstract","General and efficient tools for site-specific fluorescent or bioorthogonal labeling of RNA are in high demand. Here, we report direct in vitro selection, characterization, and application of versatile trans-acting 2'-5' adenylyl transferase ribozymes for covalent and site-specific RNA labeling. The design of our partially structured RNA pool allowed for in vitro evolution of ribozymes that modify a predetermined nucleotide in cis (i.e., intramolecular reaction) and can then be easily engineered for applications in trans (i.e., in an intermolecular setup). The resulting ribozymes are readily designed for specific target sites in small and large RNAs and accept a wide variety of N6-modified ATP analogues as small-molecule substrates. The most efficient new ribozyme (FH14) shows excellent specificity toward its target sequence also in the context of total cellular RNA."],["dc.identifier.doi","10.1021/jacs.9b10531"],["dc.identifier.pmid","31778306"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/63672"],["dc.language.iso","en"],["dc.relation","Illuminating aptamers and ribozymes for biomolecular tagging and fluorogen activation"],["dc.relation.eissn","1520-5126"],["dc.relation.issn","0002-7863"],["dc.relation.issn","1520-5126"],["dc.title","Direct in Vitro Selection of Trans-Acting Ribozymes for Posttranscriptional, Site-Specific, and Covalent Fluorescent Labeling of RNA"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2015Journal Article
    [["dc.bibliographiccitation.firstpage","50"],["dc.bibliographiccitation.journal","Beilstein Journal of Organic Chemistry"],["dc.bibliographiccitation.lastpage","59"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Schmidtgall, Boris"],["dc.contributor.author","Hoebartner, Claudia"],["dc.contributor.author","Ducho, Christian"],["dc.date.accessioned","2018-11-07T10:02:12Z"],["dc.date.available","2018-11-07T10:02:12Z"],["dc.date.issued","2015"],["dc.description.abstract","Modifications of the nucleic acid backbone are essential for the development of oligonucleotide-derived bioactive agents. The NAA-modification represents a novel artificial internucleotide linkage which enables the site-specific introduction of positive charges into the otherwise polyanionic backbone of DNA oligonucleotides. Following initial studies with the introduction of the NAA-linkage at T-T sites, it is now envisioned to prepare NAA-modified oligonucleotides bearing the modification at X-T motifs (X = A, C, G). We have therefore developed the efficient and stereoselective synthesis of NAA-linked 'dimeric' A-T phosphoramidite building blocks for automated DNA synthesis. Both the (S)- and the (R)-configured NAA-motifs were constructed with high diastereoselectivities to furnish two different phosphoramidite reagents, which were employed for the solid phase-supported automated synthesis of two NAA-modified DNA oligonucleotides. This represents a significant step to further establish the NAA-linkage as a useful addition to the existing 'toolbox' of backbone modifications for the design of bioactive oligonucleotide analogues."],["dc.identifier.doi","10.3762/bjoc.11.8"],["dc.identifier.isi","000348469500001"],["dc.identifier.pmid","25670992"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/38182"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Beilstein-institut"],["dc.relation.issn","1860-5397"],["dc.title","NAA-modified DNA oligonucleotides with zwitterionic backbones: stereoselective synthesis of A-T phosphoramidite building blocks"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2011Journal Article
    [["dc.bibliographiccitation.firstpage","no"],["dc.bibliographiccitation.issue","20"],["dc.bibliographiccitation.journal","ChemInform"],["dc.bibliographiccitation.lastpage","no"],["dc.bibliographiccitation.volume","42"],["dc.contributor.author","Hoebartner, Claudia"],["dc.contributor.author","Wachowius, Falk"],["dc.date.accessioned","2021-12-08T12:29:55Z"],["dc.date.available","2021-12-08T12:29:55Z"],["dc.date.issued","2011"],["dc.identifier.doi","10.1002/chin.201120249"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/96256"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-476"],["dc.relation.issn","0931-7597"],["dc.rights.uri","http://doi.wiley.com/10.1002/tdm_license_1.1"],["dc.title","ChemInform Abstract: Chemical Synthesis of Modified RNA"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI