Options
Meinecke, Michael
Loading...
Preferred name
Meinecke, Michael
Official Name
Meinecke, Michael
Alternative Name
Meinecke, M.
Main Affiliation
Now showing 1 - 6 of 6
2014Journal Article Research Paper [["dc.bibliographiccitation.firstpage","6228"],["dc.bibliographiccitation.issue","33"],["dc.bibliographiccitation.journal","Soft Matter"],["dc.bibliographiccitation.lastpage","6236"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Gleisner, Martin"],["dc.contributor.author","Mey, Ingo"],["dc.contributor.author","Barbot, Mariam"],["dc.contributor.author","Dreker, Christina"],["dc.contributor.author","Meinecke, Michael"],["dc.contributor.author","Steinem, Claudia"],["dc.date.accessioned","2017-09-07T11:46:54Z"],["dc.date.available","2017-09-07T11:46:54Z"],["dc.date.issued","2014"],["dc.description.abstract","The generation of a regular array of micrometre-sized pore-spanning membranes that protrude from the underlying surface as a function of osmotic pressure is reported. Giant unilamellar vesicles are spread onto non-functionalized Si/SiO2 substrates containing a highly ordered array of cavities with pore diameters of 850 nm, an interpore distance of 4 mm and a pore depth of 10 mm. The shape of the resulting pore-spanning membranes is controlled by applying an osmotic pressure difference between the bulk solution and the femtoliter-sized cavity underneath each membrane. By applying Young-Laplace's law assuming moderate lateral membrane tensions, the response of the membranes to the osmotic pressure difference can be theoretically well described. Protruded pore-spanning membranes containing the receptor lipid PIP2 specifically bind the ENTH domain of epsin resulting in an enlargement of the protrusions and disappearance as a result of ENTH-domain induced defects in the membranes. These results are discussed in the context of an ENTH-domain induced reduction of lateral membrane tension and formation of defects as a result of helix insertion of the protein in the bilayer."],["dc.identifier.doi","10.1039/c4sm00702f"],["dc.identifier.fs","606035"],["dc.identifier.gro","3142206"],["dc.identifier.isi","000340438600011"],["dc.identifier.pmid","25012509"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/11470"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/5710"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10 / Funder: DFG [SFB 803]"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1744-6848"],["dc.relation.issn","1744-683X"],["dc.relation.orgunit","Institut für Zellbiochemie"],["dc.rights.access","openAccess"],["dc.title","Driving a planar model system into the 3rd dimension: generation and control of curved pore-spanning membrane arrays"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2015Journal Article Research Paper [["dc.bibliographiccitation.firstpage","2126"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Cell Reports"],["dc.bibliographiccitation.lastpage","2134"],["dc.bibliographiccitation.volume","13"],["dc.contributor.author","Montilla-Martinez, Malayko"],["dc.contributor.author","Beck, Sabrina"],["dc.contributor.author","Kluemper, Jessica"],["dc.contributor.author","Meinecke, Michael"],["dc.contributor.author","Schliebs, Wolfgang"],["dc.contributor.author","Wagner, Richard"],["dc.contributor.author","Erdmann, Ralf"],["dc.date.accessioned","2018-11-07T09:47:30Z"],["dc.date.available","2018-11-07T09:47:30Z"],["dc.date.issued","2015"],["dc.description.abstract","Two peroxisomal targeting signals, PTS1 and PTS2, recognized by cytosolic receptors Pex5 and cooperating Pex7/Pex18, direct folded proteins to the peroxisomal matrix. A pore consisting of the PTS1 receptor Pex5 and the docking protein Pex14 imports PTS1 proteins. We identified a distinct PTS2-specific pore, which contains the PTS2 co-receptor Pex18 and the Pex14/Pex17-dockingcomplex as major constituents. The estimated maximal pore size of similar to 4.7 nm is large enough to allow import of folded PTS2 proteins. PTS2 cargo proteins modulate complex gating, open probability, and subconductance states of the pore. While the PTS1 channel is transiently activated by arriving receptor-cargo complexes, the reconstituted PTS2 channel is constitutively present in an open state. However, the cargo-loaded PTS2 channel is largely impermeable to solutes and ions. Our results demonstrate that import of PTS1 and PTS2 proteins does not converge at the peroxisomal membrane as previously anticipated but is performed by distinct pores."],["dc.description.sponsorship","Deutsche Forschungsgemeinschaft [FOR1905]"],["dc.identifier.doi","10.1016/j.celrep.2015.11.016"],["dc.identifier.isi","000366534300011"],["dc.identifier.pmid","26673321"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/12740"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/35126"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.relation.issn","2211-1247"],["dc.relation.orgunit","Institut für Zellbiochemie"],["dc.rights","CC BY-NC-ND 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-nd/4.0"],["dc.title","Distinct Pores for Peroxisomal Import of PTS1 and PTS2 Proteins"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2021Journal Article Overview [["dc.bibliographiccitation.journal","European Biophysics Journal"],["dc.contributor.author","Tarasenko, Daryna"],["dc.contributor.author","Meinecke, Michael"],["dc.date.accessioned","2021-04-14T08:29:18Z"],["dc.date.available","2021-04-14T08:29:18Z"],["dc.date.issued","2021"],["dc.description.abstract","Cellular membranes can adopt a plethora of complex and beautiful shapes, most of which are believed to have evolved for a particular physiological reason. The closely entangled relationship between membrane morphology and cellular physiology is strikingly seen in membrane trafficking pathways. During clathrin-mediated endocytosis, for example, over the course of a minute, a patch of the more or less flat plasma membrane is remodeled into a highly curved clathrin-coated vesicle. Such vesicles are internalized by the cell to degrade or recycle plasma membrane receptors or to take up extracellular ligands. Other, steadier, membrane morphologies can be observed in organellar membranes like the endoplasmic reticulum or mitochondria. In the case of mitochondria, which are double membrane-bound, ubiquitous organelles of eukaryotic cells, especially the mitochondrial inner membrane displays an intricated ultrastructure. It is highly folded and consequently has a much larger surface than the mitochondrial outer membrane. It can adopt different shapes in response to cellular demands and changes of the inner membrane morphology often accompany severe diseases, including neurodegenerative- and metabolic diseases and cancer. In recent years, progress was made in the identification of molecules that are important for the aforementioned membrane remodeling events. In this review, we will sum up recent results and discuss the main players of membrane remodeling processes that lead to the mitochondrial inner membrane ultrastructure and in clathrin-mediated endocytosis. We will compare differences and similarities between the molecular mechanisms that peripheral and integral membrane proteins use to deform membranes."],["dc.identifier.doi","10.1007/s00249-021-01501-z"],["dc.identifier.pmid","33527201"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/82861"],["dc.identifier.url","https://for2848.gwdguser.de/literature/publications/16"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","FOR 2848: Architektur und Heterogenität der inneren mitochondrialen Membran auf der Nanoskala"],["dc.relation","FOR 2848 | P05: Molekulare Charakterisierung der MICOS abhängigen mitochondrialen Innenmembran-Biogenese."],["dc.relation.eissn","1432-1017"],["dc.relation.issn","0175-7571"],["dc.relation.orgunit","Institut für Zellbiochemie"],["dc.relation.workinggroup","RG Meinecke (Molecular Membrane Biology)"],["dc.rights","CC BY 4.0"],["dc.title","Protein-dependent membrane remodeling in mitochondrial morphology and clathrin-mediated endocytosis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","overview_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2020Journal Article Research Paper [["dc.bibliographiccitation.firstpage","2355"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Cellular and Molecular Life Sciences"],["dc.bibliographiccitation.lastpage","2370"],["dc.bibliographiccitation.volume","78"],["dc.contributor.author","Kroppen, Benjamin"],["dc.contributor.author","Teske, Nelli"],["dc.contributor.author","Yambire, King F."],["dc.contributor.author","Denkert, Niels"],["dc.contributor.author","Mukherjee, Indrani"],["dc.contributor.author","Tarasenko, Daryna"],["dc.contributor.author","Jaipuria, Garima"],["dc.contributor.author","Zweckstetter, Markus"],["dc.contributor.author","Milosevic, Ira"],["dc.contributor.author","Steinem, Claudia"],["dc.contributor.author","Meinecke, Michael"],["dc.date.accessioned","2021-04-14T08:23:40Z"],["dc.date.available","2021-04-14T08:23:40Z"],["dc.date.issued","2020"],["dc.description.abstract","Membrane remodeling is a critical process for many membrane trafficking events, including clathrin-mediated endocytosis. Several molecular mechanisms for protein-induced membrane curvature have been described in some detail. Contrary, the effect that the physico-chemical properties of the membrane have on these processes is far less well understood. Here, we show that the membrane binding and curvature-inducing ENTH domain of epsin1 is regulated by phosphatidylserine (PS). ENTH binds to membranes in a PI(4,5)P2-dependent manner but only induces curvature in the presence of PS. On PS-containing membranes, the ENTH domain forms rigid homo-oligomers and assembles into clusters. Membrane binding and membrane remodeling can be separated by structure-to-function mutants. Such oligomerization mutants bind to membranes but do not show membrane remodeling activity. In vivo, they are not able to rescue defects in epidermal growth factor receptor (EGFR) endocytosis in epsin knock-down cells. Together, these data show that the membrane lipid composition is important for the regulation of protein-dependent membrane deformation during clathrin-mediated endocytosis."],["dc.identifier.doi","10.1007/s00018-020-03647-z"],["dc.identifier.pmid","32997199"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/81004"],["dc.identifier.url","https://for2848.gwdguser.de/literature/publications/21"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","FOR 2848: Architektur und Heterogenität der inneren mitochondrialen Membran auf der Nanoskala"],["dc.relation","FOR 2848 | P05: Molekulare Charakterisierung der MICOS abhängigen mitochondrialen Innenmembran-Biogenese."],["dc.relation.eissn","1420-9071"],["dc.relation.issn","1420-682X"],["dc.relation.orgunit","Institut für Zellbiochemie"],["dc.relation.workinggroup","RG Meinecke (Molecular Membrane Biology)"],["dc.rights","CC BY 4.0"],["dc.title","Cooperativity of membrane-protein and protein–protein interactions control membrane remodeling by epsin 1 and affects clathrin-mediated endocytosis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2017Journal Article Research Paper [["dc.bibliographiccitation.firstpage","889"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","The Journal of Cell Biology"],["dc.bibliographiccitation.lastpage","899"],["dc.bibliographiccitation.volume","216"],["dc.contributor.author","Tarasenko, Daryna"],["dc.contributor.author","Barbot, Mariam"],["dc.contributor.author","Jans, Daniel C."],["dc.contributor.author","Kroppen, Benjamin"],["dc.contributor.author","Sadowski, Boguslawa"],["dc.contributor.author","Heim, Gudrun"],["dc.contributor.author","Möbius, Wiebke"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Meinecke, Michael"],["dc.date.accessioned","2018-01-17T13:22:56Z"],["dc.date.available","2018-01-17T13:22:56Z"],["dc.date.issued","2017"],["dc.description.abstract","The inner membrane (IM) of mitochondria displays an intricate, highly folded architecture and can be divided into two domains: the inner boundary membrane adjacent to the outer membrane and invaginations toward the matrix, called cristae. Both domains are connected by narrow, tubular membrane segments called cristae junctions (CJs). The formation and maintenance of CJs is of vital importance for the organization of the mitochondrial IM and for mitochondrial and cellular physiology. The multisubunit mitochondrial contact site and cristae organizing system (MICOS) was found to be a major factor in CJ formation. In this study, we show that the MICOS core component Mic60 actively bends membranes and, when inserted into prokaryotic membranes, induces the formation of cristae-like plasma membrane invaginations. The intermembrane space domain of Mic60 has a lipid-binding capacity and induces membrane curvature even in the absence of the transmembrane helix. Mic60 homologues from α-proteobacteria display the same membrane deforming activity and are able to partially overcome the deletion of Mic60 in eukaryotic cells. Our results show that membrane bending by Mic60 is an ancient mechanism, important for cristae formation, and had already evolved before α-proteobacteria developed into mitochondria."],["dc.identifier.doi","10.1083/jcb.201609046"],["dc.identifier.pmid","28254827"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11711"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/9"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P01: Untersuchung der Unterschiede in der Zusammensetzung, Funktion und Position von individuellen MICOS Komplexen in einzelnen Säugerzellen"],["dc.relation","SFB 1190 | P12: Funktionelle Regulation der mitochondrialen Präsequenz-Translokase"],["dc.relation.eissn","1540-8140"],["dc.relation.orgunit","Institut für Zellbiochemie"],["dc.relation.workinggroup","RG Jakobs (Structure and Dynamics of Mitochondria)"],["dc.relation.workinggroup","RG Meinecke (Molecular Membrane Biology)"],["dc.rights","CC BY-NC-SA 4.0"],["dc.title","The MICOS component Mic60 displays a conserved membrane-bending activity that is necessary for normal cristae morphology"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2017Journal Article Research Paper [["dc.bibliographiccitation.artnumber","e28324"],["dc.bibliographiccitation.journal","eLife"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Denkert, Niels"],["dc.contributor.author","Schendzielorz, Alexander Benjamin"],["dc.contributor.author","Barbot, Mariam"],["dc.contributor.author","Versemann, Lennart"],["dc.contributor.author","Richter, Frank"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Meinecke, Michael"],["dc.date.accessioned","2020-12-10T18:48:05Z"],["dc.date.available","2020-12-10T18:48:05Z"],["dc.date.issued","2017"],["dc.description.abstract","Virtually all mitochondrial matrix proteins and a considerable number of inner membrane proteins carry a positively charged, N-terminal presequence and are imported by the TIM23 complex (presequence translocase) located in the inner mitochondrial membrane. The voltage-regulated Tim23 channel constitutes the actual protein-import pore wide enough to allow the passage of polypeptides with a secondary structure. In this study, we identify amino acids important for the cation selectivity of Tim23. Structure based mutants show that selectivity is provided by highly conserved, pore-lining amino acids. Mutations of these amino acid residues lead to reduced selectivity properties, reduced protein import capacity and they render the Tim23 channel insensitive to substrates. We thus show that the cation selectivity of the Tim23 channel is a key feature for substrate recognition and efficient protein import."],["dc.format.extent","1"],["dc.identifier.doi","10.7554/eLife.28324"],["dc.identifier.pmid","28857742"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16499"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/79012"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/12"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P12: Funktionelle Regulation der mitochondrialen Präsequenz-Translokase"],["dc.relation.eissn","2050-084X"],["dc.relation.orgunit","Institut für Zellbiochemie"],["dc.relation.workinggroup","RG Meinecke (Molecular Membrane Biology)"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject","S. cerevisiae; Tim23; biochemistry; biophysics; electrophysiology; membrane channels; mitochondria; mitochondrial biogenesis; protein trafficking; structural biology"],["dc.title","Cation selectivity of the presequence translocase channel Tim23 is crucial for efficient protein import"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC