Options
Luke, Russell
Loading...
Preferred name
Luke, Russell
Official Name
Luke, Russell
Alternative Name
Luke, R.
Luke, David Russell
Luke, D. Russell
Luke, D. R.
Luke, David
Luke, D.
Main Affiliation
Now showing 1 - 2 of 2
2009Journal Article [["dc.bibliographiccitation.firstpage","446"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","SIAM Review"],["dc.bibliographiccitation.lastpage","449"],["dc.bibliographiccitation.volume","51"],["dc.contributor.author","Luke, D. Russell"],["dc.date.accessioned","2019-07-10T08:13:29Z"],["dc.date.available","2019-07-10T08:13:29Z"],["dc.date.issued","2009"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/6000"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/61257"],["dc.language.iso","en"],["dc.notes.intern","Migrated from goescholar"],["dc.rights.access","openAccess"],["dc.subject","Inverse Problems"],["dc.subject.ddc","510"],["dc.title","The Factorization Method for Inverse Problems. By Andreas Kirsch and Natalia Grinberg."],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details2018Journal Article [["dc.bibliographiccitation.firstpage","1143"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Mathematics of Operations Research"],["dc.bibliographiccitation.lastpage","1176"],["dc.bibliographiccitation.volume","43"],["dc.contributor.author","Thao, Nguyen H."],["dc.contributor.author","Tam, Matthew K."],["dc.contributor.author","Luke, Russell"],["dc.date.accessioned","2019-07-09T11:50:21Z"],["dc.date.available","2019-07-09T11:50:21Z"],["dc.date.issued","2018"],["dc.description.abstract","We develop a framework for quantitative convergence analysis of Picard iterations of expansive set-valued fixed point mappings. There are two key components of the analysis. The first is a natural generalization of single-valued averaged mappings to expansive set-valued mappings that characterizes a type of strong calmness of the fixed point mapping. The second component to this analysis is an extension of the well-established notion of metric subregularity—or inverse calmness—of the mapping at fixed points. Convergence of expansive fixed point iterations is proved using these two properties, and quantitative estimates are a natural by-product of the framework. To demonstrate the application of the theory, we prove, for the first time, a number of results showing local linear convergence of nonconvex cyclic projections for inconsistent (and consistent) feasibility problems, local linear convergence of the forward-backward algorithm for structured optimization without convexity, strong or otherwise, and local linear convergence of the Douglas-Rachford algorithm for structured nonconvex minimization. This theory includes earlier approaches for known results, convex and nonconvex, as special cases."],["dc.identifier.arxiv","1605.05725"],["dc.identifier.doi","10.1287/moor.2017.0898"],["dc.identifier.gro","3146834"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15920"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59756"],["dc.language.iso","en"],["dc.notes.intern","mathe"],["dc.notes.intern","DOI-Import GROB-394"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.relation","RTG 2088: Research Training Group 2088 Discovering structure in complex data: Statistics meets Optimization and Inverse Problems"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","510"],["dc.title","Quantitative Convergence Analysis of Iterated Expansive, Set-Valued Mappings"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI