Now showing 1 - 7 of 7
  • 2022Journal Article
    [["dc.bibliographiccitation.journal","Nature Structural & Molecular Biology"],["dc.contributor.author","Rengachari, Srinivasan"],["dc.contributor.author","Schilbach, Sandra"],["dc.contributor.author","Kaliyappan, Thangavelu"],["dc.contributor.author","Gouge, Jerome"],["dc.contributor.author","Zumer, Kristina"],["dc.contributor.author","Schwarz, Juliane"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Dienemann, Christian"],["dc.contributor.author","Vannini, Alessandro"],["dc.contributor.author","Cramer, Patrick"],["dc.date.accessioned","2022-12-01T08:30:54Z"],["dc.date.available","2022-12-01T08:30:54Z"],["dc.date.issued","2022"],["dc.description.abstract","Abstract\n RNA polymerase II (Pol II) carries out transcription of both protein-coding and non-coding genes. Whereas Pol II initiation at protein-coding genes has been studied in detail, Pol II initiation at non-coding genes, such as small nuclear RNA (snRNA) genes, is less well understood at the structural level. Here, we study Pol II initiation at snRNA gene promoters and show that the snRNA-activating protein complex (SNAPc) enables DNA opening and transcription initiation independent of TFIIE and TFIIH in vitro. We then resolve cryo-EM structures of the SNAPc-containing Pol IIpre-initiation complex (PIC) assembled on U1 and U5 snRNA promoters. The core of SNAPc binds two turns of DNA and recognizes the snRNA promoter-specific proximal sequence element (PSE), located upstream of the TATA box-binding protein TBP. Two extensions of SNAPc, called wing-1 and wing-2, bind TFIIA and TFIIB, respectively, explaining how SNAPc directs Pol II to snRNA promoters. Comparison of structures of closed and open promoter complexes elucidates TFIIH-independent DNA opening. These results provide the structural basis of Pol II initiation at non-coding RNA gene promoters."],["dc.identifier.doi","10.1038/s41594-022-00857-w"],["dc.identifier.pii","857"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/118010"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-621"],["dc.relation.eissn","1545-9985"],["dc.relation.issn","1545-9993"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Structural basis of SNAPc-dependent snRNA transcription initiation by RNA polymerase II"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2020Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","448"],["dc.bibliographiccitation.issue","7799"],["dc.bibliographiccitation.journal","Nature"],["dc.bibliographiccitation.lastpage","451"],["dc.bibliographiccitation.volume","579"],["dc.contributor.author","Wagner, Felix R."],["dc.contributor.author","Dienemann, Christian"],["dc.contributor.author","Wang, Haibo"],["dc.contributor.author","Stützer, Alexandra"],["dc.contributor.author","Tegunov, Dimitry"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Cramer, Patrick"],["dc.date.accessioned","2021-04-14T08:27:11Z"],["dc.date.available","2021-04-14T08:27:11Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1038/s41586-020-2088-0"],["dc.identifier.pmid","32188943"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/82197"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/193"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.eissn","1476-4687"],["dc.relation.issn","0028-0836"],["dc.relation.workinggroup","RG Cramer"],["dc.title","Structure of SWI/SNF chromatin remodeller RSC bound to a nucleosome"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","883"],["dc.bibliographiccitation.issue","6569"],["dc.bibliographiccitation.journal","Science"],["dc.bibliographiccitation.lastpage","887"],["dc.bibliographiccitation.volume","374"],["dc.contributor.author","Fianu, Isaac"],["dc.contributor.author","Chen, Ying"],["dc.contributor.author","Dienemann, Christian"],["dc.contributor.author","Dybkov, Olexandr"],["dc.contributor.author","Linden, Andreas"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Cramer, Patrick"],["dc.date.accessioned","2021-12-01T09:21:16Z"],["dc.date.available","2021-12-01T09:21:16Z"],["dc.date.issued","2021"],["dc.identifier.doi","10.1126/science.abk0154"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/94392"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/359"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-478"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.eissn","1095-9203"],["dc.relation.issn","0036-8075"],["dc.relation.workinggroup","RG Cramer"],["dc.title","Structural basis of Integrator-mediated transcription regulation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2017Journal Article
    [["dc.bibliographiccitation.firstpage","204"],["dc.bibliographiccitation.journal","Nature"],["dc.bibliographiccitation.lastpage","209"],["dc.bibliographiccitation.volume","551"],["dc.contributor.author","Schilbach, S."],["dc.contributor.author","Hantsche, M."],["dc.contributor.author","Tegunov, D."],["dc.contributor.author","Dienemann, C."],["dc.contributor.author","Wigge, C."],["dc.contributor.author","Urlaub, H."],["dc.contributor.author","Cramer, P."],["dc.date.accessioned","2018-01-09T12:04:30Z"],["dc.date.available","2018-01-09T12:04:30Z"],["dc.date.issued","2017"],["dc.description.abstract","For the initiation of transcription, RNA polymerase II (Pol II) assembles with general transcription factors on promoter DNA to form the pre-initiation complex (PIC). Here we report cryo-electron microscopy structures of the Saccharomyces cerevisiae PIC and PIC-core Mediator complex at nominal resolutions of 4.7 Å and 5.8 Å, respectively. The structures reveal transcription factor IIH (TFIIH), and suggest how the core and kinase TFIIH modules function in the opening of promoter DNA and the phosphorylation of Pol II, respectively. The TFIIH core subunit Ssl2 (a homologue of human XPB) is positioned on downstream DNA by the 'E-bridge' helix in TFIIE, consistent with TFIIE-stimulated DNA opening. The TFIIH kinase module subunit Tfb3 (MAT1 in human) anchors the kinase Kin28 (CDK7), which is mobile in the PIC but preferentially located between the Mediator hook and shoulder in the PIC-core Mediator complex. Open spaces between the Mediator head and middle modules may allow access of the kinase to its substrate, the C-terminal domain of Pol II."],["dc.identifier.doi","10.1038/nature24282"],["dc.identifier.pmid","29088706"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11583"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation.eissn","1476-4687"],["dc.title","Structures of transcription pre-initiation complex with TFIIH and Mediator"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2019Journal Article
    [["dc.bibliographiccitation.artnumber","2885"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Kokic, Goran"],["dc.contributor.author","Chernev, Aleksandar"],["dc.contributor.author","Tegunov, Dimitry"],["dc.contributor.author","Dienemann, C."],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Cramer, Patrick"],["dc.date.accessioned","2019-07-22T12:01:28Z"],["dc.date.available","2019-07-22T12:01:28Z"],["dc.date.issued","2019"],["dc.description.abstract","Nucleotide excision repair (NER) is the major DNA repair pathway that removes UV-induced and bulky DNA lesions. There is currently no structure of NER intermediates, which form around the large multisubunit transcription factor IIH (TFIIH). Here we report the cryo-EM structure of an NER intermediate containing TFIIH and the NER factor XPA. Compared to its transcription conformation, the TFIIH structure is rearranged such that its ATPase subunits XPB and XPD bind double- and single-stranded DNA, consistent with their translocase and helicase activities, respectively. XPA releases the inhibitory kinase module of TFIIH, displaces a 'plug' element from the DNA-binding pore in XPD, and together with the NER factor XPG stimulates XPD activity. Our results explain how TFIIH is switched from a transcription to a repair factor, and provide the basis for a mechanistic analysis of the NER pathway."],["dc.identifier.doi","10.1038/s41467-019-10745-5"],["dc.identifier.pmid","31253769"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16290"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/61789"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","2041-1723"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Structural basis of TFIIH activation for nucleotide excision repair"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2019-12-12Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1537"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","Cell"],["dc.bibliographiccitation.lastpage","1550"],["dc.bibliographiccitation.volume","179"],["dc.contributor.author","Grimm, Clemens"],["dc.contributor.author","Hillen, Hauke S."],["dc.contributor.author","Bedenk, Kristina"],["dc.contributor.author","Bartuli, Julia"],["dc.contributor.author","Neyer, Simon"],["dc.contributor.author","Zhang, Qian"],["dc.contributor.author","Hüttenhofer, Alexander"],["dc.contributor.author","Erlacher, Matthias"],["dc.contributor.author","Dienemann, Christian"],["dc.contributor.author","Schlosser, Andreas"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Böttcher, Bettina"],["dc.contributor.author","Szalay, Aladar A"],["dc.contributor.author","Cramer, Patrick"],["dc.contributor.author","Fischer, Utz"],["dc.date.accessioned","2020-04-02T14:08:48Z"],["dc.date.available","2020-04-02T14:08:48Z"],["dc.date.issued","2019-12-12"],["dc.description.abstract","Poxviruses encode a multisubunit DNA-dependent RNA polymerase (vRNAP) that carries out viral gene expression in the host cytoplasm. We report cryo-EM structures of core and complete vRNAP enzymes from Vaccinia virus at 2.8 Å resolution. The vRNAP core enzyme resembles eukaryotic RNA polymerase II (Pol II) but also reveals many virus-specific features, including the transcription factor Rap94. The complete enzyme additionally contains the transcription factor VETF, the mRNA processing factors VTF/CE and NPH-I, the viral core protein E11, and host tRNAGln. This complex can carry out the entire early transcription cycle. The structures show that Rap94 partially resembles the Pol II initiation factor TFIIB, that the vRNAP subunit Rpo30 resembles the Pol II elongation factor TFIIS, and that NPH-I resembles chromatin remodeling enzymes. Together with the accompanying paper (Hillen et al., 2019), these results provide the basis for unraveling the mechanisms of poxvirus transcription and RNA processing."],["dc.identifier.doi","10.1016/j.cell.2019.11.024"],["dc.identifier.pmid","31835032"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/63542"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/34"],["dc.language.iso","en"],["dc.notes","Research funded by Deutsche Forschungsgemeinschaft (SPP193518-1SFB860Fi 573 7-2) | European Research Council (693023) | Volkswagen Foundation | Austrian Science Fund (P-30486-BBLSFB F4411) | Germany’s Excellence Strategy (EXC 2067/1- 390729940) | Genelux Corporation"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.eissn","1097-4172"],["dc.relation.issn","0092-8674"],["dc.relation.workinggroup","RG Cramer"],["dc.relation.workinggroup","RG Hillen (Structure and Function of Molecular Machines)"],["dc.title","Structural Basis of Poxvirus Transcription: Vaccinia RNA Polymerase Complexes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2020Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","717"],["dc.bibliographiccitation.issue","7792"],["dc.bibliographiccitation.journal","Nature"],["dc.bibliographiccitation.lastpage","720"],["dc.bibliographiccitation.volume","577"],["dc.contributor.author","Wang, Haibo"],["dc.contributor.author","Dienemann, Christian"],["dc.contributor.author","Stützer, Alexandra"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Cheung, Alan C. M."],["dc.contributor.author","Cramer, Patrick"],["dc.date.accessioned","2021-04-14T08:27:36Z"],["dc.date.available","2021-04-14T08:27:36Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1038/s41586-020-1933-5"],["dc.identifier.pmid","31969703"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/82346"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/27"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.eissn","1476-4687"],["dc.relation.issn","0028-0836"],["dc.relation.workinggroup","RG Cramer"],["dc.title","Structure of the transcription coactivator SAGA"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC