Options
Varges, Daniela
Loading...
Preferred name
Varges, Daniela
Official Name
Varges, Daniela
Alternative Name
Varges, D.
Main Affiliation
Now showing 1 - 10 of 14
2015Journal Article [["dc.bibliographiccitation.firstpage","396"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Molecular Neurobiology"],["dc.bibliographiccitation.lastpage","405"],["dc.bibliographiccitation.volume","51"],["dc.contributor.author","Cramm, Maria"],["dc.contributor.author","Schmitz, Matthias"],["dc.contributor.author","Karch, Andre"],["dc.contributor.author","Zafar, Saima"],["dc.contributor.author","Varges, Daniel. A."],["dc.contributor.author","Mitrova, Eva"],["dc.contributor.author","Schroeder, Bjoern"],["dc.contributor.author","Raeber, Alex"],["dc.contributor.author","Kuhn, Franziska"],["dc.contributor.author","Zerr, Inga"],["dc.date.accessioned","2018-11-07T10:01:38Z"],["dc.date.available","2018-11-07T10:01:38Z"],["dc.date.issued","2015"],["dc.description.abstract","The development of in vitro amplification systems allows detecting femtomolar amounts of prion protein scrapie (PrPSc) in human cerebrospinal fluid (CSF). We performed a CSF study to determine the effects of prion disease type, codon 129 genotype, PrPSc type, and other disease-related factors on the real-time quaking-induced conversion (RT-QuIC) response. We analyzed times to 10,000 relative fluorescence units, areas under the curve and the signal maximum of RT-QuIC response as seeding parameters of interest. Interestingly, type of prion disease (sporadic vs. genetic) and the PRNP mutation (E200K vs. V210I and FFI), codon 129 genotype, and PrPSc type affected RT-QuIC response. In genetic forms, type of mutation showed the strongest effect on the observed outcome variables. In sporadic CJD, MM1 patients displayed a higher RT-QuIC signal maximum compared to MV1 and VV1. Age and gender were not associated with RT-QuIC signal, but patients with a short disease course showed a higher seeding efficiency of the RT-QuIC response. This study demonstrated that PrPSc characteristics in the CSF of human prion disease patients are associated with disease subtypes and rate of decline as defined by disease duration."],["dc.identifier.doi","10.1007/s12035-014-8709-6"],["dc.identifier.isi","000349006200031"],["dc.identifier.pmid","24809690"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/10255"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/38062"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Humana Press Inc"],["dc.relation.issn","1559-1182"],["dc.relation.issn","0893-7648"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Characteristic CSF Prion Seeding Efficiency in Humans with Prion Diseases"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2014Journal Article [["dc.bibliographiccitation.firstpage","654"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Journal of Neurology Neurosurgery & Psychiatry"],["dc.bibliographiccitation.lastpage","659"],["dc.bibliographiccitation.volume","85"],["dc.contributor.author","Krasnianski, Anna"],["dc.contributor.author","Juan, P. Sanchez"],["dc.contributor.author","Ponto, Claudia"],["dc.contributor.author","Bartl, Mario"],["dc.contributor.author","Heinemann, U."],["dc.contributor.author","Varges, Daniel. A."],["dc.contributor.author","Schulz-Schaeffer, Walter J."],["dc.contributor.author","Kretzschmar, Hans A."],["dc.contributor.author","Zerr, I."],["dc.date.accessioned","2018-11-07T09:39:44Z"],["dc.date.available","2018-11-07T09:39:44Z"],["dc.date.issued","2014"],["dc.description.abstract","Background In absence of a positive family history, the diagnosis of fatal familial insomnia (FFI) might be difficult because of atypical clinical features and low sensitivity of diagnostic tests. FFI patients usually do not fulfil the established classification criteria for Creutzfeldt-Jakob disease (CJD); therefore, a prion disease is not always suspected. Objective To propose an update of diagnostic pathway for the identification of patients for the analysis of D178-M129 mutation. Design and methods Data on 41 German FFI patients were analysed. Clinical symptoms and signs, MRI, PET, SPECT, polysomnography, EEG and cerebrospinal fluid biomarkers were studied. Results An algorithm was developed which correctly identified at least 81% of patients with the FFI diagnosis during early disease stages. It is based on the detection of organic sleep disturbances, either verified clinically or by a polysomnography, and a combination of vegetative and focal neurological signs and symptoms. Specificity of the approach was tested on three cohorts of patients (MM1 sporadic CJD patients, non-selected sporadic CJD and other neurodegenerative diseases). Conclusions The proposed scheme may help to improve the clinical diagnosis of FFI. As the sensitivity of all diagnostic tests investigated but polysomnography is low in FFI, detailed clinical investigation is of special importance."],["dc.identifier.doi","10.1136/jnnp-2013-305978"],["dc.identifier.isi","000336124400015"],["dc.identifier.pmid","24249784"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/10971"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/33354"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Bmj Publishing Group"],["dc.relation.issn","1468-330X"],["dc.relation.issn","0022-3050"],["dc.rights","CC BY-NC 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc/3.0"],["dc.title","A proposal of new diagnostic pathway for fatal familial insomnia"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2021-04-21Journal Article [["dc.bibliographiccitation.artnumber","86"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Alzheimer's Research & Therapy"],["dc.bibliographiccitation.volume","13"],["dc.contributor.author","Zerr, Inga"],["dc.contributor.author","Villar-Piqué, Anna"],["dc.contributor.author","Hermann, Peter"],["dc.contributor.author","Schmitz, Matthias"],["dc.contributor.author","Varges, Daniela"],["dc.contributor.author","Ferrer, Isidre"],["dc.contributor.author","Riggert, Joachim"],["dc.contributor.author","Zetterberg, Henrik"],["dc.contributor.author","Blennow, Kaj"],["dc.contributor.author","Llorens, Franc"],["dc.date.accessioned","2021-06-01T09:42:16Z"],["dc.date.accessioned","2022-08-18T12:38:53Z"],["dc.date.available","2021-06-01T09:42:16Z"],["dc.date.available","2022-08-18T12:38:53Z"],["dc.date.issued","2021-04-21"],["dc.date.updated","2022-07-29T12:17:47Z"],["dc.description.abstract","Abstract\r\n \r\n Background\r\n Blood neurofilament light (Nfl) and total-tau (t-tau) have been described to be increased in several neurological conditions, including prion diseases and other neurodegenerative dementias. Here, we aim to determine the accuracy of plasma Nfl and t-tau in the differential diagnosis of neurodegenerative dementias and their potential value as prognostic markers of disease severity.\r\n \r\n \r\n Methods\r\n Plasma Nfl and t-tau were measured in healthy controls (HC, n = 70), non-neurodegenerative neurological disease with (NND-Dem, n = 17) and without dementia syndrome (NND, n = 26), Alzheimer’s disease (AD, n = 44), Creutzfeldt-Jakob disease (CJD, n = 83), dementia with Lewy bodies/Parkinson’s disease with dementia (DLB/PDD, n = 35), frontotemporal dementia (FTD, n = 12), and vascular dementia (VaD, n = 22). Biomarker diagnostic accuracies and cutoff points for the diagnosis of CJD were calculated, and associations between Nfl and t-tau concentrations with other fluid biomarkers, demographic, genetic, and clinical data in CJD cases were assessed. Additionally, the value of Nfl and t-tau predicting disease survival in CJD was evaluated.\r\n \r\n \r\n Results\r\n Among diagnostic groups, highest plasma Nfl and t-tau concentrations were detected in CJD (fold changes of 38 and 18, respectively, compared to HC). Elevated t-tau was able to differentiate CJD from all other groups, whereas elevated Nfl concentrations were also detected in NND-Dem, AD, DLB/PDD, FTD, and VaD compared to HC. Both biomarkers discriminated CJD from non-CJD dementias with an AUC of 0.93. In CJD, plasma t-tau, but not Nfl, was associated with PRNP codon 129 genotype and CJD subtype. Positive correlations were observed between plasma Nfl and t-tau concentrations, as well as between plasma and CSF concentrations of both biomarkers (p < 0.001). Nfl was increased in rapidly progressive AD (rpAD) compared to slow progressive AD (spAD) and associated to Mini-Mental State Examination results. However, Nfl displayed higher accuracy than t-tau discriminating CJD from rpAD and spAD. Finally, plasma t-tau, but not plasma Nfl, was significantly associated with disease duration, offering a moderate survival prediction capacity.\r\n \r\n \r\n Conclusions\r\n Plasma Nfl and t-tau are useful complementary biomarkers for the differential diagnosis of CJD. Additionally, plasma t-tau emerges as a potential prognostic marker of disease duration."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2021"],["dc.identifier.citation","Alzheimer's Research & Therapy. 2021 Apr 21;13(1):86"],["dc.identifier.doi","10.1186/s13195-021-00815-6"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/17765"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/85196"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112965"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.notes.intern","Merged from goescholar"],["dc.publisher","BioMed Central"],["dc.relation.eissn","1758-9193"],["dc.rights","CC BY 4.0"],["dc.rights.holder","The Author(s)"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject","Dementia"],["dc.subject","Creutzfeldt-Jakob disease"],["dc.subject","Biomarkers"],["dc.subject","Plasma"],["dc.subject","Neurofilament light"],["dc.subject","Tau"],["dc.subject","Diagnosis"],["dc.subject","Disease progression"],["dc.title","Diagnostic and prognostic value of plasma neurofilament light and total-tau in sporadic Creutzfeldt-Jakob disease"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2016Journal Article [["dc.bibliographiccitation.firstpage","1896"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Molecular Neurobiology"],["dc.bibliographiccitation.lastpage","1904"],["dc.bibliographiccitation.volume","53"],["dc.contributor.author","Cramm, Maria"],["dc.contributor.author","Schmitz, Matthias"],["dc.contributor.author","Karch, Andre"],["dc.contributor.author","Mitrova, Eva"],["dc.contributor.author","Kuhn, Franziska"],["dc.contributor.author","Schroeder, Bjoern"],["dc.contributor.author","Raeber, Alex"],["dc.contributor.author","Varges, Daniel. A."],["dc.contributor.author","Kim, Yong-Sun"],["dc.contributor.author","Satoh, Katsuya"],["dc.contributor.author","Collins, Steven J."],["dc.contributor.author","Zerr, Inga"],["dc.date.accessioned","2018-11-07T10:16:36Z"],["dc.date.available","2018-11-07T10:16:36Z"],["dc.date.issued","2016"],["dc.description.abstract","Real-time quaking-induced conversion (RT-QuIC) allows the amplification of miniscule amounts of scrapie prion protein (PrPSc). Recent studies applied the RT-QuIC methodology to cerebrospinal fluid (CSF) for diagnosing human prion diseases. However, to date, there has not been a formal multi-centre assessment of the reproducibility, validity and stability of RT-QuIC in this context, an indispensable step for establishment as a diagnostic test in clinical practice. In the present study, we analysed CSF from 110 prion disease patients and 400 control patients using the RT-QuIC method under various conditions. In addition, \"blinded\" ring trials between different participating sites were performed to estimate reproducibility. Using the previously established cut-off of 10,000 relative fluorescence units (rfu), we obtained a sensitivity of 85 % and a specificity of 99 %. The multi-centre inter-laboratory reproducibility of RT-QuIC revealed a Fleiss' kappa value of 0.83 (95 % CI: 0.40-1.00) indicating an almost perfect agreement. Moreover, we investigated the impact of short-term CSF storage at different temperatures, long-term storage, repeated freezing and thawing cycles and the contamination of CSF with blood on the RT-QuIC seeding response. Our data indicated that the PrPSc seed in CSF is stable to any type of storage condition but sensitive to contaminations with blood (> 1250 erythrocytes/mu L), which results in a false negative RT-QuIC response. Fresh blood-contaminated samples (3 days) can be rescued by removal of erythrocytes. The present study underlines the reproducibility and high stability of RT-QuIC across various CSF storage conditions with a remarkable sensitivity and specificity, suggesting RT-QuIC as an innovative and robust diagnostic method."],["dc.identifier.doi","10.1007/s12035-015-9133-2"],["dc.identifier.isi","000372263600045"],["dc.identifier.pmid","25823511"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/11732"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/41064"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Humana Press Inc"],["dc.relation.issn","1559-1182"],["dc.relation.issn","0893-7648"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Stability and Reproducibility Underscore Utility of RT-QuIC for Diagnosis of Creutzfeldt-Jakob Disease"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2022Journal Article Research Paper [["dc.bibliographiccitation.firstpage","1259"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Diagnostics"],["dc.bibliographiccitation.volume","12"],["dc.contributor.affiliation","Emdina, Anna; 1Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; anna.emdina@stud.uni-goettingen.de (A.E.); d.varges@med.uni-goettingen.de (D.V.); sabine.nuhn@med.uni-goettingen.de (S.N.); stefan.goebel@med.uni-goettingen.de (S.G.); timothy.bunck@med.uni-goettingen.de (T.B.); fabian.maass@med.uni-goettingen.de (F.M.); matthias.schmitz@med.uni-goettingen.de (M.S.); franc.llorens@gmail.com (F.L.); brit.mollenhauer@med.uni-goettingen.de (B.M.); ingazerr@med.uni-goettingen.de (I.Z.)"],["dc.contributor.affiliation","Hermann, Peter; 1Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; anna.emdina@stud.uni-goettingen.de (A.E.); d.varges@med.uni-goettingen.de (D.V.); sabine.nuhn@med.uni-goettingen.de (S.N.); stefan.goebel@med.uni-goettingen.de (S.G.); timothy.bunck@med.uni-goettingen.de (T.B.); fabian.maass@med.uni-goettingen.de (F.M.); matthias.schmitz@med.uni-goettingen.de (M.S.); franc.llorens@gmail.com (F.L.); brit.mollenhauer@med.uni-goettingen.de (B.M.); ingazerr@med.uni-goettingen.de (I.Z.)"],["dc.contributor.affiliation","Varges, Daniela; 1Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; anna.emdina@stud.uni-goettingen.de (A.E.); d.varges@med.uni-goettingen.de (D.V.); sabine.nuhn@med.uni-goettingen.de (S.N.); stefan.goebel@med.uni-goettingen.de (S.G.); timothy.bunck@med.uni-goettingen.de (T.B.); fabian.maass@med.uni-goettingen.de (F.M.); matthias.schmitz@med.uni-goettingen.de (M.S.); franc.llorens@gmail.com (F.L.); brit.mollenhauer@med.uni-goettingen.de (B.M.); ingazerr@med.uni-goettingen.de (I.Z.)"],["dc.contributor.affiliation","Nuhn, Sabine; 1Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; anna.emdina@stud.uni-goettingen.de (A.E.); d.varges@med.uni-goettingen.de (D.V.); sabine.nuhn@med.uni-goettingen.de (S.N.); stefan.goebel@med.uni-goettingen.de (S.G.); timothy.bunck@med.uni-goettingen.de (T.B.); fabian.maass@med.uni-goettingen.de (F.M.); matthias.schmitz@med.uni-goettingen.de (M.S.); franc.llorens@gmail.com (F.L.); brit.mollenhauer@med.uni-goettingen.de (B.M.); ingazerr@med.uni-goettingen.de (I.Z.)"],["dc.contributor.affiliation","Goebel, Stefan; 1Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; anna.emdina@stud.uni-goettingen.de (A.E.); d.varges@med.uni-goettingen.de (D.V.); sabine.nuhn@med.uni-goettingen.de (S.N.); stefan.goebel@med.uni-goettingen.de (S.G.); timothy.bunck@med.uni-goettingen.de (T.B.); fabian.maass@med.uni-goettingen.de (F.M.); matthias.schmitz@med.uni-goettingen.de (M.S.); franc.llorens@gmail.com (F.L.); brit.mollenhauer@med.uni-goettingen.de (B.M.); ingazerr@med.uni-goettingen.de (I.Z.)"],["dc.contributor.affiliation","Bunck, Timothy; 1Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; anna.emdina@stud.uni-goettingen.de (A.E.); d.varges@med.uni-goettingen.de (D.V.); sabine.nuhn@med.uni-goettingen.de (S.N.); stefan.goebel@med.uni-goettingen.de (S.G.); timothy.bunck@med.uni-goettingen.de (T.B.); fabian.maass@med.uni-goettingen.de (F.M.); matthias.schmitz@med.uni-goettingen.de (M.S.); franc.llorens@gmail.com (F.L.); brit.mollenhauer@med.uni-goettingen.de (B.M.); ingazerr@med.uni-goettingen.de (I.Z.)"],["dc.contributor.affiliation","Maass, Fabian; 1Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; anna.emdina@stud.uni-goettingen.de (A.E.); d.varges@med.uni-goettingen.de (D.V.); sabine.nuhn@med.uni-goettingen.de (S.N.); stefan.goebel@med.uni-goettingen.de (S.G.); timothy.bunck@med.uni-goettingen.de (T.B.); fabian.maass@med.uni-goettingen.de (F.M.); matthias.schmitz@med.uni-goettingen.de (M.S.); franc.llorens@gmail.com (F.L.); brit.mollenhauer@med.uni-goettingen.de (B.M.); ingazerr@med.uni-goettingen.de (I.Z.)"],["dc.contributor.affiliation","Schmitz, Matthias; 1Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; anna.emdina@stud.uni-goettingen.de (A.E.); d.varges@med.uni-goettingen.de (D.V.); sabine.nuhn@med.uni-goettingen.de (S.N.); stefan.goebel@med.uni-goettingen.de (S.G.); timothy.bunck@med.uni-goettingen.de (T.B.); fabian.maass@med.uni-goettingen.de (F.M.); matthias.schmitz@med.uni-goettingen.de (M.S.); franc.llorens@gmail.com (F.L.); brit.mollenhauer@med.uni-goettingen.de (B.M.); ingazerr@med.uni-goettingen.de (I.Z.)"],["dc.contributor.affiliation","Llorens, Franc; 1Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; anna.emdina@stud.uni-goettingen.de (A.E.); d.varges@med.uni-goettingen.de (D.V.); sabine.nuhn@med.uni-goettingen.de (S.N.); stefan.goebel@med.uni-goettingen.de (S.G.); timothy.bunck@med.uni-goettingen.de (T.B.); fabian.maass@med.uni-goettingen.de (F.M.); matthias.schmitz@med.uni-goettingen.de (M.S.); franc.llorens@gmail.com (F.L.); brit.mollenhauer@med.uni-goettingen.de (B.M.); ingazerr@med.uni-goettingen.de (I.Z.)"],["dc.contributor.affiliation","Kruse, Niels; 4Department of Neuropathology, University Medical Centre Göttingen, 37075 Göttingen, Germany; n.kruse@med.uni-goettingen.de"],["dc.contributor.affiliation","Lingor, Paul; 5Department of Neurology, Klinikum Rechts der Isar, Technical University of Munich, 80333 Munich, Germany; paul.lingor@tum.de"],["dc.contributor.affiliation","Mollenhauer, Brit; 1Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; anna.emdina@stud.uni-goettingen.de (A.E.); d.varges@med.uni-goettingen.de (D.V.); sabine.nuhn@med.uni-goettingen.de (S.N.); stefan.goebel@med.uni-goettingen.de (S.G.); timothy.bunck@med.uni-goettingen.de (T.B.); fabian.maass@med.uni-goettingen.de (F.M.); matthias.schmitz@med.uni-goettingen.de (M.S.); franc.llorens@gmail.com (F.L.); brit.mollenhauer@med.uni-goettingen.de (B.M.); ingazerr@med.uni-goettingen.de (I.Z.)"],["dc.contributor.affiliation","Zerr, Inga; 1Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; anna.emdina@stud.uni-goettingen.de (A.E.); d.varges@med.uni-goettingen.de (D.V.); sabine.nuhn@med.uni-goettingen.de (S.N.); stefan.goebel@med.uni-goettingen.de (S.G.); timothy.bunck@med.uni-goettingen.de (T.B.); fabian.maass@med.uni-goettingen.de (F.M.); matthias.schmitz@med.uni-goettingen.de (M.S.); franc.llorens@gmail.com (F.L.); brit.mollenhauer@med.uni-goettingen.de (B.M.); ingazerr@med.uni-goettingen.de (I.Z.)"],["dc.contributor.author","Emdina, Anna"],["dc.contributor.author","Hermann, Peter"],["dc.contributor.author","Varges, Daniela"],["dc.contributor.author","Nuhn, Sabine"],["dc.contributor.author","Goebel, Stefan"],["dc.contributor.author","Bunck, Timothy"],["dc.contributor.author","Maass, Fabian"],["dc.contributor.author","Schmitz, Matthias"],["dc.contributor.author","Llorens, Franc"],["dc.contributor.author","Kruse, Niels"],["dc.contributor.author","Zerr, Inga"],["dc.contributor.author","Lingor, Paul"],["dc.contributor.author","Mollenhauer, Brit"],["dc.date.accessioned","2022-06-01T09:39:57Z"],["dc.date.available","2022-06-01T09:39:57Z"],["dc.date.issued","2022"],["dc.date.updated","2022-06-05T20:43:26Z"],["dc.description.abstract","Biomarkers are increasingly recognized as tools in the diagnosis and prognosis of neurodegenerative diseases. No fluid biomarker for Parkinson’s disease (PD) has been established to date, but α-synuclein, a major component of Lewy bodies in PD and dementia with Lewy bodies (DLB), has become a promising candidate. Here, we investigated CSF α-synuclein in patients with PD (n = 28), PDD (n = 8), and DLB (n = 5), applying an electrochemiluminescence immunoassay. Median values were non-significantly (p = 0.430) higher in patients with PDD and DLB (287 pg/mL) than in PD (236 pg/mL). A group of n = 36 primarily non-demented patients with PD and PDD was clinically followed for up to two years. A higher baseline α-synuclein was associated with increases in Hoehn and Yahr classifications (p = 0.019) and Beck Depression Inventory scores (p < 0.001) as well as worse performance in Trail Making Test A (p = 0.017), Trail Making Test B (p = 0.043), and the Boston Naming Test (p = 0.002) at follow-up. Surprisingly, higher levels were associated with a better performance in semantic verbal fluency tests (p = 0.046). In summary, CSF α-synuclein may be a potential prognostic marker for disease progression, affective symptoms, and executive cognitive function in PD. Larger-scaled studies have to validate these findings and the discordant results for single cognitive tests in this exploratory investigation."],["dc.identifier.doi","10.3390/diagnostics12051259"],["dc.identifier.pii","diagnostics12051259"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/108601"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-572"],["dc.relation.eissn","2075-4418"],["dc.title","Baseline Cerebrospinal Fluid α-Synuclein in Parkinson’s Disease Is Associated with Disease Progression and Cognitive Decline"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI2020Journal Article [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Llorens, Franc"],["dc.contributor.author","Hermann, Peter"],["dc.contributor.author","Villar-Piqué, Anna"],["dc.contributor.author","Diaz-Lucena, Daniela"],["dc.contributor.author","Nägga, Katarina"],["dc.contributor.author","Hansson, Oskar"],["dc.contributor.author","Santana, Isabel"],["dc.contributor.author","Schmitz, Matthias"],["dc.contributor.author","Schmidt, Christian"],["dc.contributor.author","Varges, Daniela"],["dc.contributor.author","Goebel, Stefan"],["dc.contributor.author","Dumurgier, Julien"],["dc.contributor.author","Zetterberg, Henrik"],["dc.contributor.author","Blennow, Kaj"],["dc.contributor.author","Paquet, Claire"],["dc.contributor.author","Baldeiras, Inês"],["dc.contributor.author","Ferrer, Isidro"],["dc.contributor.author","Zerr, Inga"],["dc.date.accessioned","2021-04-14T08:27:37Z"],["dc.date.available","2021-04-14T08:27:37Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1038/s41467-020-14373-2"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/17201"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/82349"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.notes.intern","Merged from goescholar"],["dc.relation.eissn","2041-1723"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Cerebrospinal fluid lipocalin 2 as a novel biomarker for the differential diagnosis of vascular dementia"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2022-07-19Journal Article Research Paper [["dc.bibliographiccitation.journal","Frontiers in Neurology"],["dc.bibliographiccitation.volume","13"],["dc.contributor.affiliation","Maass, Fabian; 1Department of Neurology, University Medical Center Göttingen, Göttingen, Germany"],["dc.contributor.affiliation","Hermann, Peter; 1Department of Neurology, University Medical Center Göttingen, Göttingen, Germany"],["dc.contributor.affiliation","Varges, Daniela; 1Department of Neurology, University Medical Center Göttingen, Göttingen, Germany"],["dc.contributor.affiliation","Nuhn, Sabine; 1Department of Neurology, University Medical Center Göttingen, Göttingen, Germany"],["dc.contributor.affiliation","van Riesen, Christoph; 1Department of Neurology, University Medical Center Göttingen, Göttingen, Germany"],["dc.contributor.affiliation","Jamous, Ala; 3Department of Neuroradiology, University Medical Center Göttingen, Göttingen, Germany"],["dc.contributor.affiliation","Focke, Niels K.; 1Department of Neurology, University Medical Center Göttingen, Göttingen, Germany"],["dc.contributor.affiliation","Hewitt, Manuel; 1Department of Neurology, University Medical Center Göttingen, Göttingen, Germany"],["dc.contributor.affiliation","Leha, Andreas; 4Department of Medical Statistics, University Medical Center, Göttingen, Germany"],["dc.contributor.affiliation","Bähr, Mathias; 1Department of Neurology, University Medical Center Göttingen, Göttingen, Germany"],["dc.contributor.affiliation","Zerr, Inga; 1Department of Neurology, University Medical Center Göttingen, Göttingen, Germany"],["dc.contributor.author","Maass, Fabian"],["dc.contributor.author","Hermann, Peter"],["dc.contributor.author","Varges, Daniela"],["dc.contributor.author","Nuhn, Sabine"],["dc.contributor.author","van Riesen, Christoph"],["dc.contributor.author","Jamous, Ala"],["dc.contributor.author","Focke, Niels K."],["dc.contributor.author","Hewitt, Manuel"],["dc.contributor.author","Leha, Andreas"],["dc.contributor.author","Bähr, Mathias"],["dc.contributor.author","Zerr, Inga"],["dc.date.accessioned","2022-08-04T08:31:14Z"],["dc.date.available","2022-08-04T08:31:14Z"],["dc.date.issued","2022-07-19"],["dc.date.updated","2022-08-02T14:39:19Z"],["dc.description.abstract","The objective of the study was to characterize the pattern of cognitive dysfunction in patients with multiple system atrophy (MSA) applying a standardized neuropsychological assessment. A total of 20 patients with the diagnosis of probable or possible MSA were enrolled for neuropsychological assessment applying the CERAD plus battery. All patients were tested at baseline and 14/20 patients received additional follow-up assessments (median follow-up of 24 months). Additionally, relationship between cortical thickness values/subcortical gray matter volumes and CERAD subitems was evaluated at baseline in a subgroup of 13/20 patients. Trail Making Test (TMT) was the most sensitive CERAD item at baseline with abnormal performance (z-score < −1.28) in one or both pathological TMT items (TMT-A, TMT-B) in 60% of patients with MSA. Additionally, there was a significant inverse correlation between the volume of the left and the right accumbens area and the TMT A item after adjusting for age (left side: p = 0.0009; right side p = 0.003). Comparing both subtypes, patients with MSA-C had significant lower values in phonemic verbal fluency (p = 0.04) and a trend for lower values in semantic verbal fluency (p = 0.06) compared to MSA-P. Additionally, patients with MSA-C showed significantly worse performance in the TMT-B task (p = 0.04) and a trend for worse performance in the TMT-A task (p = 0.06). Concerning longitudinal follow-up, a significant worsening in the TMT-B (p = 0.03) can be reported in MSA. In conclusion, frontal-executive dysfunction presents the hallmark of cognitive impairment in MSA."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2022"],["dc.identifier.doi","10.3389/fneur.2022.881369"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112628"],["dc.language.iso","en"],["dc.relation.eissn","1664-2295"],["dc.rights","CC BY 4.0"],["dc.rights.uri","http://creativecommons.org/licenses/by/4.0/"],["dc.title","Prospective CERAD Neuropsychological Assessment in Patients With Multiple System Atrophy"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI2009Journal Article [["dc.bibliographiccitation.firstpage","263"],["dc.bibliographiccitation.issue","5-6"],["dc.bibliographiccitation.journal","Neurodegenerative Diseases"],["dc.bibliographiccitation.lastpage","269"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Gmitterova, Karin"],["dc.contributor.author","Heinemann, U."],["dc.contributor.author","Gawinecka, Joanna"],["dc.contributor.author","Varges, Daniel. A."],["dc.contributor.author","Ciesielczyk, Barbara"],["dc.contributor.author","Valkovic, P."],["dc.contributor.author","Benetin, J."],["dc.contributor.author","Zerr, I."],["dc.date.accessioned","2018-11-07T08:35:12Z"],["dc.date.available","2018-11-07T08:35:12Z"],["dc.date.issued","2009"],["dc.description.abstract","Background: The 8-hydroxy-2 deoxyguanosine (8-OHdG) is a product of nucleoside oxidation of DNA and a reliable marker of oxidative stress markers. Increased levels of oxidative stress have been reported in the cerebrospinal fluid (CSF) of patients with various neurodegenerative disorders. Objective: In search of a biochemical indicator of Parkinson's disease (PD), we analyzed the levels 8-OHdG in the CSF of 99 patients, using ELISA to assess the differences between various neurodegenerative disorders. Results: Statistically significant higher CSF levels (p = 0.022) of 8-OHdG in non-demented PD patients as compared to the control group were observed. No differences between CSF 8-OHdG levels and age at the time of lumbar puncture, presence or severity of dementia, or gender were found. Conclusions: 8-OHdG levels could be potentially useful in the neurochemically supported diagnosis of PD. Copyright (C) 2009 S. Karger AG, Basel"],["dc.description.sponsorship","European Commission [SP5A-CT-2007-044438]"],["dc.identifier.doi","10.1159/000237221"],["dc.identifier.isi","000274466900008"],["dc.identifier.pmid","19955696"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/9327"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/18007"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Karger"],["dc.relation.issn","1660-2854"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","8-OHdG in Cerebrospinal Fluid as a Marker of Oxidative Stress in Various Neurodegenerative Diseases"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2008Journal Article [["dc.bibliographiccitation.firstpage","658"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Annals of Neurology"],["dc.bibliographiccitation.lastpage","661"],["dc.bibliographiccitation.volume","63"],["dc.contributor.author","Krasnianski, Anna"],["dc.contributor.author","Bartl, Mario"],["dc.contributor.author","Sanchez Juan, Pascual J."],["dc.contributor.author","Heinemann, Uta"],["dc.contributor.author","Meissner, Bettina"],["dc.contributor.author","Varges, Daniel. A."],["dc.contributor.author","Schulze-Sturm, Ulf"],["dc.contributor.author","Kretzschmar, Hans A."],["dc.contributor.author","Schulz-Schaeffer, Walter J."],["dc.contributor.author","Zerr, Inga"],["dc.date.accessioned","2018-11-07T11:15:18Z"],["dc.date.available","2018-11-07T11:15:18Z"],["dc.date.issued","2008"],["dc.description.abstract","Our aim was to develop a detailed clinical description of fatal familial insomnia in a large patient group with respect to the M129V genotype. Data on 41 German fatal familial insomnia patients were analyzed. Clinical features, 14-3-3 proteins in the cerebrospinal fluid, magnetic resonance imaging, positron emission tomography, single-photon emission computed tomography, polysomnography, and electroencephalography were studied. Age at disease onset, disease duration, and clinical syndrome varied depending on the codon 129 genotype. Because the sensitivity of the most diagnostic tests is low in fatal familial insomnia, detailed clinical investigation is extremely important. Polysomnography may help to support the diagnosis."],["dc.identifier.doi","10.1002/ana.21358"],["dc.identifier.isi","000255960600015"],["dc.identifier.pmid","18360821"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/6093"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/54336"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-liss"],["dc.relation.issn","0364-5134"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Fatal familial insomnia: Clinical features and early identification"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2016Journal Article [["dc.bibliographiccitation.artnumber","28711"],["dc.bibliographiccitation.journal","Scientific Reports"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Schmitz, Matthias"],["dc.contributor.author","Cramm, Maria"],["dc.contributor.author","Llorens, Franc"],["dc.contributor.author","Candelise, Niccolo"],["dc.contributor.author","Mueller-Cramm, Dominik"],["dc.contributor.author","Varges, Daniel. A."],["dc.contributor.author","Schulz-Schaeffer, Walter J."],["dc.contributor.author","Zafar, Saima"],["dc.contributor.author","Zerr, Inga"],["dc.date.accessioned","2018-11-07T10:11:42Z"],["dc.date.available","2018-11-07T10:11:42Z"],["dc.date.issued","2016"],["dc.description.abstract","In vitro amplification assays, such as real-time quaking-induced conversion (RT-QuIC) are used to detect aggregation activity of misfolded prion protein (PrP) in brain, cerebrospinal fluid (CSF) and urine samples from patients with a prion disease. We believe that the method also has a much broader application spectrum. In the present study, we applied RT-QuIC as a pre-screening test for substances that potentially inhibit the aggregation process of the cellular PrP (PrPC) to proteinase (PK)-resistant PrPres. We chose doxycycline as the test substance as it has been tested successfully in animal models and proposed in clinical studies as a therapeutic for prion diseases. The RT-QuIC-reaction was seeded with brain tissue or CSF from sCJD patients and doxycycline was then added in different concentrations as well as at different time points. In both experiments, we observed a dose-and time-dependent inhibition of the RT-QuIC seeding response and a decrease of PK resistant PrPres when doxycycline was added. In contrast, ampicillin or sucrose had no effect on the RT-QuIC seeding response. Our study is the first to apply RT-QuIC as a pre-screening assay for compounds inhibiting the PrP aggregation in vitro and confirms that doxycycline is an efficient inhibitor of the PrP aggregation process in RT-QuIC analysis."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2016"],["dc.identifier.doi","10.1038/srep28711"],["dc.identifier.isi","000379131000001"],["dc.identifier.pmid","27385410"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/13497"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/40099"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Nature Publishing Group"],["dc.relation.issn","2045-2322"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Application of an in vitro-amplification assay as a novel pre-screening test for compounds inhibiting the aggregation of prion protein scrapie"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS