Options
Krick, Roswitha
Loading...
Preferred name
Krick, Roswitha
Official Name
Krick, Roswitha
Alternative Name
Krick, R.
Now showing 1 - 3 of 3
2010Journal Article [["dc.bibliographiccitation.firstpage","965"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","The Journal of Cell Biology"],["dc.bibliographiccitation.lastpage","973"],["dc.bibliographiccitation.volume","190"],["dc.contributor.author","Krick, Roswitha"],["dc.contributor.author","Bremer, Sebastian"],["dc.contributor.author","Welter, Evelyn"],["dc.contributor.author","Schlotterhose, Petra"],["dc.contributor.author","Muehe, Yvonne"],["dc.contributor.author","Eskelinen, Eeva-Liisa"],["dc.contributor.author","Thumm, Michael"],["dc.date.accessioned","2018-11-07T08:39:07Z"],["dc.date.available","2018-11-07T08:39:07Z"],["dc.date.issued","2010"],["dc.description.abstract","The molecular details of the biogenesis of double-membraned autophagosomes are poorly understood. We identify the Saccharomyces cerevisiae AAA-adenosine triphosphatase Cdc48 and its substrate-recruiting cofactor Shp1/Ubx1 as novel components needed for autophagosome biogenesis. In mammals, the Cdc48 homologue p97/VCP and the Shp1 homologue p47 mediate Golgi reassembly by extracting an unknown mono-ubiquitinated fusion regulator from a complex. We find no requirement of ubiquitination or the proteasome system for autophagosome biogenesis but detect interaction of Shp1 with the ubiquitin-fold autophagy protein Atg8. Atg8 coupled to phosphatidylethanolamine ( PE) is crucial for autophagosome elongation and, in vitro, mediates tethering and hemifusion. Interaction with Shp1 requires an FK motif within the N-terminal non-ubiquitin-like Atg8 domain. Based on our data, we speculate that autophagosome formation, in contrast to Golgi reassembly, requires a complex in which Atg8 functionally substitutes ubiquitin. This, for the first time, would give a rationale for use of the ubiquitin-like Atg8 during macroautophagy and would explain why Atg8-PE delipidation is necessary for efficient macroautophagy."],["dc.description.sponsorship","Deutsche Forschungsgemeinschaft"],["dc.identifier.doi","10.1083/jcb.201002075"],["dc.identifier.isi","000282604600005"],["dc.identifier.pmid","20855502"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/6296"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/18915"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Rockefeller Univ Press"],["dc.relation.issn","0021-9525"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Cdc48/p97 and Shp1/p47 regulate autophagosome biogenesis in concert with ubiquitin-like Atg8"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2008Journal Article [["dc.bibliographiccitation.firstpage","4492"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Molecular Biology of the Cell"],["dc.bibliographiccitation.lastpage","4505"],["dc.bibliographiccitation.volume","19"],["dc.contributor.author","Krick, Roswitha"],["dc.contributor.author","Muehe, Yvonne"],["dc.contributor.author","Prick, Tanja"],["dc.contributor.author","Bremer, S."],["dc.contributor.author","Schlotterhose, Petra"],["dc.contributor.author","Eskelinen, E-L."],["dc.contributor.author","Millen, Jonathan I."],["dc.contributor.author","Goldfarb, David S."],["dc.contributor.author","Thumm, Michael"],["dc.date.accessioned","2018-11-07T11:10:42Z"],["dc.date.available","2018-11-07T11:10:42Z"],["dc.date.issued","2008"],["dc.description.abstract","Autophagy is a diverse family of processes that transport cytoplasm and organelles into the lysosome/vacuole lumen for degradation. During macroautophagy cargo is packaged in autophagosomes that fuse with the lysosome/vacuole. During microautophagy cargo is directly engulfed by the lysosome/vacuole membrane. Piecemeal microautophagy of the nucleus (PMN) occurs in Saccharomyces cerevisiae at nucleus-vacuole (NV) junctions and results in the pinching-off and release into the vacuole of nonessential portions of the nucleus. Previous studies concluded macroautophagy ATG genes are not absolutely required for PMN. Here we report using two biochemical assays that PMN is efficiently inhibited in atg mutant cells: PMN blebs are produced, but vesicles are rarely released into the vacuole lumen. Electron microscopy of arrested PMN structures in atg7, atg8, and atg9 mutant cells suggests that NV-junction-associated micronuclei may normally be released from the nucleus before their complete enclosure by the vacuole membrane. In this regard PMN is similar to the microautophagy of peroxisomes (micropexophagy), where the side of the peroxisome opposite the engulfing vacuole is capped by a structure called the \"micropexophagy-specific membrane apparatus\" (MIPA). The MIPA contains Atg proteins and facilitates terminal enclosure and fusion steps. PMN does not require the complete vacuole homotypic fusion genes. We conclude that a spectrum of ATG genes is required for the terminal vacuole enclosure and fusion stages of PMN."],["dc.description.sponsorship","National Science Foundation [MCB-072064]"],["dc.identifier.doi","10.1091/mbc.E08-04-0363"],["dc.identifier.isi","000260472200042"],["dc.identifier.pmid","18701704"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/53267"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Amer Soc Cell Biology"],["dc.relation.issn","1059-1524"],["dc.title","Piecemeal Microautophagy of the Nucleus Requires the Core Macroautophagy Genes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2006Conference Abstract [["dc.bibliographiccitation.firstpage","336"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Autophagy"],["dc.bibliographiccitation.lastpage","337"],["dc.bibliographiccitation.volume","2"],["dc.contributor.author","Thumm, Michael"],["dc.contributor.author","Appelles, Anika"],["dc.contributor.author","Epple, Ulrike D."],["dc.contributor.author","Krick, Roswitha"],["dc.contributor.author","Muehe, Yvonne"],["dc.contributor.author","Tolstrup, Joern"],["dc.date.accessioned","2018-11-07T09:08:48Z"],["dc.date.available","2018-11-07T09:08:48Z"],["dc.date.issued","2006"],["dc.identifier.isi","000240249800031"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/26112"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Landes Bioscience"],["dc.publisher.place","Georgetown"],["dc.relation.issn","1554-8627"],["dc.title","What are the mechanistic differences between autophagy and the Cvt pathway? How are autophagic bodies lysed within the vacuole?"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details WOS