Options
Sargin, Derya
Loading...
Preferred name
Sargin, Derya
Official Name
Sargin, Derya
Alternative Name
Sargin, D.
Now showing 1 - 4 of 4
2011Journal Article [["dc.bibliographiccitation.artnumber","27"],["dc.bibliographiccitation.journal","BMC Biology"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Sargin, Derya"],["dc.contributor.author","El-Kordi, Ahmed"],["dc.contributor.author","Agarwal, Amit"],["dc.contributor.author","Müller, Michael"],["dc.contributor.author","Wojcik, Sonja M."],["dc.contributor.author","Hassouna, Imam"],["dc.contributor.author","Sperling, Swetlana"],["dc.contributor.author","Nave, Klaus-Armin"],["dc.contributor.author","Ehrenreich, Hannelore"],["dc.date.accessioned","2017-09-07T11:46:35Z"],["dc.date.available","2017-09-07T11:46:35Z"],["dc.date.issued","2011"],["dc.description.abstract","BACKGROUND: Erythropoietin (EPO) and its receptor (EPOR) are expressed in the developing brain and their transcription is upregulated in adult neurons and glia upon injury or neurodegeneration. We have shown neuroprotective effects and improved cognition in patients with neuropsychiatric diseases treated with EPO. However, the critical EPO targets in brain are unknown, and separation of direct and indirect effects has remained difficult, given the role of EPO in hematopoiesis and brain oxygen supply. RESULTS: Here we demonstrate that mice with transgenic expression of a constitutively active EPOR isoform (cEPOR) in pyramidal neurons of cortex and hippocampus exhibit enhancement of spatial learning, cognitive flexibility, social memory, and attentional capacities, accompanied by increased impulsivity. Superior cognitive performance is associated with augmented long-term potentiation of cEPOR expressing neurons in hippocampal slices. CONCLUSIONS: Active EPOR stimulates neuronal plasticity independent of any hematopoietic effects and in addition to its neuroprotective actions. This property of EPOR signaling should be exploited for defining novel strategies to therapeutically enhance cognitive performance in disease conditions."],["dc.format.extent","16"],["dc.identifier.doi","10.1186/1741-7007-9-27"],["dc.identifier.gro","3150548"],["dc.identifier.pmid","21527022"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/6376"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/7322"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.rights","CC BY 2.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/2.0"],["dc.title","Expression of constitutively active erythropoietin receptor in pyramidal neurons of cortex and hippocampus boosts higher cognitive functions in mice"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2012Journal Article [["dc.bibliographiccitation.firstpage","1029"],["dc.bibliographiccitation.journal","Molecular Medicine"],["dc.bibliographiccitation.lastpage","1040"],["dc.bibliographiccitation.volume","18"],["dc.contributor.author","Kästner, Anne"],["dc.contributor.author","Grube, Sabrina"],["dc.contributor.author","El-Kordi, Ahmed"],["dc.contributor.author","Stepniak, Beata"],["dc.contributor.author","Friedrichs, Heidi"],["dc.contributor.author","Sargin, Derya"],["dc.contributor.author","Schwitulla, Judith"],["dc.contributor.author","Begemann, Martin"],["dc.contributor.author","Giegling, Ina"],["dc.contributor.author","Miskowiak, Kamilla W."],["dc.contributor.author","Sperling, Swetlana"],["dc.contributor.author","Hannke, Kathrin"],["dc.contributor.author","Ramin, Anna"],["dc.contributor.author","Heinrich, Ralf"],["dc.contributor.author","Gefeller, Olaf"],["dc.contributor.author","Nave, Klaus-Armin"],["dc.contributor.author","Rujescu, Dan"],["dc.contributor.author","Ehrenreich, Hannelore"],["dc.date.accessioned","2017-09-07T11:46:36Z"],["dc.date.available","2017-09-07T11:46:36Z"],["dc.date.issued","2012"],["dc.description.abstract","Erythropoietin (EPO) improves cognitive performance in clinical studies and rodent experiments. We hypothesized that an intrinsicrole of EPO for cognition exists, with particular relevance in situations of cognitive decline, which is reflected by associations ofEPO and EPO receptor (EPOR) genotypes with cognitive functions. To prove this hypothesis, schizophrenic patients (N > 1000) weregenotyped for 5′ upstream–located gene variants, EPO SNP rs1617640 (T/G) and EPOR STR(GA)n. Associations of these variants wereobtained for cognitive processing speed, fine motor skills and short-term memory readouts, with one particular combination ofgenotypes superior to all others (p < 0.0001). In an independent healthy control sample (N > 800), these associations were confirmed.A matching preclinical study with mice demonstrated cognitive processing speed and memory enhanced upon transgenicexpression of constitutively active EPOR in pyramidal neurons of cortex and hippocampus. We thus predicted that thehuman genotypes associated with better cognition would reflect gain-of-function effects. Indeed, reporter gene assays and quantitativetranscriptional analysis of peripheral blood mononuclear cells showed genotype-dependent EPO/EPOR expression differences.Together, these findings reveal a role of endogenous EPO/EPOR for cognition, at least in schizophrenic patients."],["dc.identifier.doi","10.2119/molmed.2012.00190"],["dc.identifier.gro","3150561"],["dc.identifier.pmid","22669473"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/7335"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.title","Common variants of the genes encoding erythropoietin and its receptor modulate cognitive performance in schizophrenia"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2010Journal Article [["dc.bibliographiccitation.firstpage","573"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Best Practice and Research Clinical Anaesthesiology"],["dc.bibliographiccitation.lastpage","594"],["dc.contributor.author","Sargin, Derya"],["dc.contributor.author","Friedrichs, Heidi"],["dc.contributor.author","El-Kordi, Ahmed"],["dc.contributor.author","Ehrenreich, Hannelore"],["dc.date.accessioned","2017-09-07T11:46:19Z"],["dc.date.available","2017-09-07T11:46:19Z"],["dc.date.issued","2010"],["dc.description.abstract","Erythropoietin (EPO), originally discovered as hematopoietic growth factor, has direct effects on cells of the nervous system that make it a highly attractive candidate drug for neuroprotection/neuroregeneration. Hardly any other compound has led to so much preclinical work in the field of translational neuroscience than EPO. Almost all of the >180 preclinical studies performed by many independent research groups from all over the world in the last 12 years have yielded positive results on EPO as a neuroprotective drug. The fact that EPO was approved for the treatment of anemia >20 years ago and found to be well tolerated and safe, facilitated the first steps of translation from preclinical findings to the clinic. On the other hand, the same fact, naturally associated with loss of patent protection, hindered to develop EPO as a highly promising therapeutic strategy for application in human brain disease. Therefore, only few clinical neuroprotection studies have been concluded, all with essentially positive and stimulating results, but no further development towards the clinic has occurred thus far. This article reviews the preclinical and clinical work on EPO for the indications neuroprotection/neuroregeneration and cognition, and hopefully will stimulate new endeavours promoting development of EPO for the treatment of human brain diseases."],["dc.identifier.doi","10.1016/j.bpa.2010.10.005"],["dc.identifier.gro","3150484"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/7254"],["dc.language.iso","en"],["dc.notes.status","zu prüfen"],["dc.title","Erythropoietin as neuroprotective and neuroregenerative treatment strategy: comprehensive overview of 12 years of preclinical and clinical research"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]Details DOI2008Journal Article Research Paper [["dc.bibliographiccitation.artnumber","37"],["dc.bibliographiccitation.journal","BMC Biology"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Adamcio, Bartosz"],["dc.contributor.author","Sargin, Derya"],["dc.contributor.author","Stradomska, Alicja"],["dc.contributor.author","Medrihan, Lucian"],["dc.contributor.author","Gertler, Christoph"],["dc.contributor.author","Theis, Fabian"],["dc.contributor.author","Zhang, Mingyue"],["dc.contributor.author","Müller, Michael"],["dc.contributor.author","Hassouna, Imam"],["dc.contributor.author","Hannke, Kathrin"],["dc.contributor.author","Sperling, Swetlana"],["dc.contributor.author","Radyushkin, Konstantin"],["dc.contributor.author","El-Kordi, Ahmed"],["dc.contributor.author","Schulze, Lizzy"],["dc.contributor.author","Ronnenberg, Anja"],["dc.contributor.author","Wolf, Fred"],["dc.contributor.author","Brose, Nils"],["dc.contributor.author","Rhee, Jeong-Seop"],["dc.contributor.author","Zhang, Weiqi"],["dc.contributor.author","Ehrenreich, Hannelore"],["dc.date.accessioned","2017-09-07T11:48:12Z"],["dc.date.available","2017-09-07T11:48:12Z"],["dc.date.issued","2008"],["dc.description.abstract","Background: Erythropoietin (EPO) improves cognition of human subjects in the clinical setting by as yet unknown mechanisms. We developed a mouse model of robust cognitive improvement by EPO to obtain the first clues of how EPO influences cognition, and how it may act on hippocampal neurons to modulate plasticity. Results: We show here that a 3-week treatment of young mice with EPO enhances long-term potentiation (LTP), a cellular correlate of learning processes in the CAI region of the hippocampus. This treatment concomitantly alters short-term synaptic plasticity and synaptic transmission, shifting the balance of excitatory and inhibitory activity. These effects are accompanied by an improvement of hippocampus dependent memory, persisting for 3 weeks after termination of EPO injections, and are independent of changes in hematocrit. Networks of EPO-treated primary hippocampal neurons develop lower overall spiking activity but enhanced bursting in discrete neuronal assemblies. At the level of developing single neurons, EPO treatment reduces the typical increase in excitatory synaptic transmission without changing the number of synaptic boutons, consistent with prolonged functional silencing of synapses. Conclusion: We conclude that EPO improves hippocampus dependent memory by modulating plasticity, synaptic connectivity and activity of memory-related neuronal networks. These mechanisms of action of EPO have to be further exploited for treating neuropsychiatric diseases."],["dc.identifier.doi","10.1186/1741-7007-6-37"],["dc.identifier.gro","3143237"],["dc.identifier.isi","000260109300001"],["dc.identifier.pmid","18782446"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/8430"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/729"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1741-7007"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Erythropoietin enhances hippocampal long-term potentiation and memory"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS