Now showing 1 - 4 of 4
  • 2015Journal Article
    [["dc.bibliographiccitation.firstpage","465"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Genome Biology and Evolution"],["dc.bibliographiccitation.lastpage","480"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Karlsson, Magnus"],["dc.contributor.author","Durling, Mikael Brandstrom"],["dc.contributor.author","Choi, Jaeyoung"],["dc.contributor.author","Kosawang, Chatchai"],["dc.contributor.author","Lackner, Gerald"],["dc.contributor.author","Tzelepis, Georgios D."],["dc.contributor.author","Nygren, Kristiina"],["dc.contributor.author","Dubey, Mukesh K."],["dc.contributor.author","Kamou, Nathalie"],["dc.contributor.author","Levasseur, Anthony"],["dc.contributor.author","Zapparata, Antonio"],["dc.contributor.author","Wang, J."],["dc.contributor.author","Amby, Daniel Buchvaldt"],["dc.contributor.author","Jensen, Birgit"],["dc.contributor.author","Sarrocco, Sabrina"],["dc.contributor.author","Panteris, Emmanuel"],["dc.contributor.author","Lagopodi, Anastasia L."],["dc.contributor.author","Poeggeler, Stefanie"],["dc.contributor.author","Vannacci, Giovanni"],["dc.contributor.author","Collinge, David B."],["dc.contributor.author","Hoffmeister, Dirk"],["dc.contributor.author","Henrissat, Bernard"],["dc.contributor.author","Lee, Yong-Hwan"],["dc.contributor.author","Jensen, Dan Funck"],["dc.date.accessioned","2018-11-07T10:01:16Z"],["dc.date.available","2018-11-07T10:01:16Z"],["dc.date.issued","2015"],["dc.description.abstract","Clonostachys rosea is a mycoparasitic fungus that can control several important plant diseases. Here, we report on the genome sequencing of C. rosea and a comparative genome analysis, in order to resolve the phylogenetic placement of C. rosea and to study the evolution of mycoparasitism as a fungal lifestyle. The genome of C. rosea is estimated to 58.3 Mb, and contains 14,268 predicted genes. A phylogenomic analysis shows that C. Tosco clusters as sister taxon to plant pathogenic Fusarium species, with mycoparasitic/saprotrophic Tfichoderma species in an ancestral position. A comparative analysis of gene family evolution reveals several distinct differences between the included mycoparasites. Clonostachys rosea contains significantly more ATP-binding cassette (ABC) transporters, polyketide synthases, cytochrome P450 monooxygenases, pectin lyases, glucose-methanol-choline oxidoreductases, and lytic polysaccharide monooxygenases compared with other fungi in the Hypocreales. Interestingly, the increase of ABC transporter gene number in C. rosea is associated with phylogenetic subgroups B (multidrug resistance proteins) and G (pleiotropic drug resistance transporters), whereas an increase in subgroup C (multidrug resistance-associated proteins) is evident in Tfichoderma virens. In contrast with mycoparasitic Tfichoderma species, C. rosea contains very few chitinases. Expression of six group B and group G ABC transporter genes was induced in C. rosea during exposure to the Fusafium mycotoxin zearalenone, the fungicide Boscalid or metabolites from the biocontrol bacterium Pseudomonas chiororaphis. The data suggest that tolerance toward secondary metabolites is a prominent feature in the biology of C. rosea."],["dc.identifier.doi","10.1093/gbe/evu292"],["dc.identifier.isi","000351607800005"],["dc.identifier.pmid","25575496"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/37980"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Oxford Univ Press"],["dc.relation.issn","1759-6653"],["dc.title","Insights on the Evolution of Mycoparasitism from the Genome of Clonostachys rosea"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2016Journal Article
    [["dc.bibliographiccitation.artnumber","12662"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Peter, Martina"],["dc.contributor.author","Kohler, Annegret"],["dc.contributor.author","Ohm, Robin A."],["dc.contributor.author","Kuo, Alan"],["dc.contributor.author","Kruetzmann, Jennifer"],["dc.contributor.author","Morin, Emmanuelle"],["dc.contributor.author","Arend, Matthias"],["dc.contributor.author","Barry, Kerrie W."],["dc.contributor.author","Binder, Manfred"],["dc.contributor.author","Choi, Cindy"],["dc.contributor.author","Clum, Alicia"],["dc.contributor.author","Copeland, Alex"],["dc.contributor.author","Grisel, Nadine"],["dc.contributor.author","Haridas, Sajeet"],["dc.contributor.author","Kipfer, Tabea"],["dc.contributor.author","LaButti, Kurt M."],["dc.contributor.author","Lindquist, Erika A."],["dc.contributor.author","Lipzen, Anna"],["dc.contributor.author","Maire, Renaud"],["dc.contributor.author","Meier, Barbara"],["dc.contributor.author","Mihaltcheva, Sirma"],["dc.contributor.author","Molinier, Virginie"],["dc.contributor.author","Murat, Claude"],["dc.contributor.author","Poeggeler, Stefanie"],["dc.contributor.author","Quandt, C. Alisha"],["dc.contributor.author","Sperisen, Christoph"],["dc.contributor.author","Tritt, Andrew"],["dc.contributor.author","Tisserant, Emilie"],["dc.contributor.author","Crous, Pedro W."],["dc.contributor.author","Henrissat, Bernard"],["dc.contributor.author","Nehls, Uwe"],["dc.contributor.author","Egli, Simon"],["dc.contributor.author","Spatafora, Joseph W."],["dc.contributor.author","Grigoriev, Igor V."],["dc.contributor.author","Martin, Francis M."],["dc.date.accessioned","2018-11-07T10:09:11Z"],["dc.date.available","2018-11-07T10:09:11Z"],["dc.date.issued","2016"],["dc.description.abstract","The most frequently encountered symbiont on tree roots is the ascomycete Cenococcum geophilum, the only mycorrhizal species within the largest fungal class Dothideomycetes, a class known for devastating plant pathogens. Here we show that the symbiotic genomic idiosyncrasies of ectomycorrhizal basidiomycetes are also present in C. geophilum with symbiosis-induced, taxon-specific genes of unknown function and reduced numbers of plant cell wall-degrading enzymes. C. geophilum still holds a significant set of genes in categories known to be involved in pathogenesis and shows an increased genome size due to transposable elements proliferation. Transcript profiling revealed a striking upregulation of membrane transporters, including aquaporin water channels and sugar transporters, and mycorrhiza-induced small secreted proteins (MiSSPs) in ectomycorrhiza compared with free-living mycelium. The frequency with which this symbiont is found on tree roots and its possible role in water and nutrient transport in symbiosis calls for further studies on mechanisms of host and environmental adaptation."],["dc.identifier.doi","10.1038/ncomms12662"],["dc.identifier.isi","000385364700001"],["dc.identifier.pmid","27601008"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/13961"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/39609"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.relation.issn","2041-1723"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Ectomycorrhizal ecology is imprinted in the genome of the dominant symbiotic fungus Cenococcum geophilum"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2015Journal Article
    [["dc.bibliographiccitation.artnumber","e0140398"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","PLoS ONE"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Kumar, Abhishek"],["dc.contributor.author","Henrissat, Bernard"],["dc.contributor.author","Arvas, Mikko"],["dc.contributor.author","Syed, Muhammad Fahad"],["dc.contributor.author","Thieme, Nils"],["dc.contributor.author","Benz, J. Philipp"],["dc.contributor.author","Sorensen, Jens Laurids"],["dc.contributor.author","Record, Eric"],["dc.contributor.author","Poeggeler, Stefanie"],["dc.contributor.author","Kempken, Frank"],["dc.date.accessioned","2018-11-07T09:50:01Z"],["dc.date.available","2018-11-07T09:50:01Z"],["dc.date.issued","2015"],["dc.description.abstract","The marine-derived Scopulariopsis brevicaulis strain LF580 produces scopularides A and B, which have anticancerous properties. We carried out genome sequencing using three next-generation DNA sequencing methods. De novo hybrid assembly yielded 621 scaffolds with a total size of 32.2 Mb and 16298 putative gene models. We identified a large non-ribosomal peptide synthetase gene (nrps1) and supporting pks2 gene in the same biosynthetic gene cluster. This cluster and the genes within the cluster are functionally active as confirmed by RNA-Seq. Characterization of carbohydrate-active enzymes and major facilitator superfamily (MFS)-type transporters lead to postulate S. brevicaulis originated from a soil fungus, which came into contact with the marine sponge Tethya aurantium. This marine sponge seems to provide shelter to this fungus and micro-environment suitable for its survival in the ocean. This study also builds the platform for further investigations of the role of life-style and secondary metabolites from S. brevicaulis."],["dc.description.sponsorship","European Union Seventh Framework Program FP7 [265926]"],["dc.identifier.doi","10.1371/journal.pone.0140398"],["dc.identifier.isi","000363804200009"],["dc.identifier.pmid","26505484"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/12562"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/35622"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Public Library Science"],["dc.relation.issn","1932-6203"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","De Novo Assembly and Genome Analyses of the Marine-Derived Scopulariopsis brevicaulis Strain LF580 Unravels Life-Style Traits and Anticancerous Scopularide Biosynthetic Gene Cluster"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2018Journal Article
    [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Scientific Reports"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Kumar, Abhishek"],["dc.contributor.author","Sørensen, Jens Laurids"],["dc.contributor.author","Hansen, Frederik Teilfeldt"],["dc.contributor.author","Arvas, Mikko"],["dc.contributor.author","Syed, Muhammad Fahad"],["dc.contributor.author","Hassan, Lara"],["dc.contributor.author","Benz, J. Philipp"],["dc.contributor.author","Record, Eric"],["dc.contributor.author","Henrissat, Bernard"],["dc.contributor.author","Pöggeler, Stefanie"],["dc.contributor.author","Kempken, Frank"],["dc.date.accessioned","2020-12-10T18:10:11Z"],["dc.date.available","2020-12-10T18:10:11Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1038/s41598-018-28473-z"],["dc.identifier.eissn","2045-2322"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15439"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/73878"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.intern","Merged from goescholar"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Genome Sequencing and analyses of Two Marine Fungi from the North Sea Unraveled a Plethora of Novel Biosynthetic Gene Clusters"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI