Now showing 1 - 3 of 3
  • 2012Journal Article
    [["dc.bibliographiccitation.firstpage","769"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Communications in Mathematical Physics"],["dc.bibliographiccitation.lastpage","785"],["dc.bibliographiccitation.volume","311"],["dc.contributor.author","Longo, Roberto"],["dc.contributor.author","Rehren, Karl-Henning"],["dc.date.accessioned","2018-11-07T09:10:49Z"],["dc.date.available","2018-11-07T09:10:49Z"],["dc.date.issued","2012"],["dc.description.abstract","We construct local, boost covariant boundary QFT nets of von Neumann algebras on the interior of the Lorentz hyperboloid h(R), x(2) - t(2) > R-2, x > 0, in the two-dimensional Minkowski spacetime. Our first construction is canonical, starting with a local conformal net on R, and is analogous to our previous construction of local boundary CFT nets on the Minkowski half-space. This net is in a thermal state at Hawking temperature. Then, inspired by a recent construction by E. Witten and one of us, we consider a unitary semigroup that we use to build up infinitely many nets. Surprisingly, the one-particle semigroup is again isomorphic to the semigroup of symmetric inner functions of the disk. In particular, by considering the U(1)-current net, we can associate with any given symmetric inner function a local, boundary QFT net on h(R). By considering different states, we shall also have nets in a ground state, rather than in a KMS state."],["dc.identifier.doi","10.1007/s00220-011-1381-z"],["dc.identifier.fs","587230"],["dc.identifier.isi","000303449500008"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/8790"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/26578"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.relation.issn","0010-3616"],["dc.relation.orgunit","Fakultät für Physik"],["dc.rights","Goescholar"],["dc.rights.uri","https://goedoc.uni-goettingen.de/licenses"],["dc.title","Boundary Quantum Field Theory on the Interior of the Lorentz Hyperboloid"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2016Journal Article
    [["dc.bibliographiccitation.firstpage","587"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Communications in Mathematical Physics"],["dc.bibliographiccitation.lastpage","614"],["dc.bibliographiccitation.volume","345"],["dc.contributor.author","Longo, Roberto"],["dc.contributor.author","Morinelli, Vincenzo"],["dc.contributor.author","Rehren, Karl-Henning"],["dc.date.accessioned","2018-11-07T10:12:21Z"],["dc.date.available","2018-11-07T10:12:21Z"],["dc.date.issued","2016"],["dc.description.abstract","Particle states transforming in one of the infinite spin representations of the Poincar, group (as classified by E. Wigner) are consistent with fundamental physical principles, but local fields generating them from the vacuum state cannot exist. While it is known that infinite spin states localized in a spacelike cone are dense in the one-particle space, we show here that the subspace of states localized in any double cone is trivial. This implies that the free field theory associated with infinite spin has no observables localized in bounded regions. In an interacting theory, if the vacuum vector is cyclic for a double cone local algebra, then the theory does not contain infinite spin representations. We also prove that if a Doplicher-Haag-Roberts representation (localized in a double cone) of a local net is covariant under a unitary representation of the Poincar, group containing infinite spin, then it has infinite statistics. These results hold under the natural assumption of the Bisognano-Wichmann property, and we give a counter-example (with continuous particle degeneracy) without this property where the conclusions fail. Our results hold true in any spacetime dimension s + 1 where infinite spin representations exist, namely s >= 2."],["dc.identifier.doi","10.1007/s00220-015-2475-9"],["dc.identifier.isi","000378934300006"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/13421"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/40220"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/669240/EU//QUEST"],["dc.relation.issn","1432-0916"],["dc.relation.issn","0010-3616"],["dc.relation.orgunit","Fakultät für Physik"],["dc.rights","CC BY 4.0"],["dc.title","Where Infinite Spin Particles are Localizable"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2009Journal Article
    [["dc.bibliographiccitation.firstpage","1165"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Communications in Mathematical Physics"],["dc.bibliographiccitation.lastpage","1182"],["dc.bibliographiccitation.volume","285"],["dc.contributor.author","Longo, Roberto"],["dc.contributor.author","Rehren, Karl-Henning"],["dc.date.accessioned","2018-11-07T08:32:56Z"],["dc.date.available","2018-11-07T08:32:56Z"],["dc.date.issued","2009"],["dc.description.abstract","The relation between two-dimensional conformal quantum field theories with and without a timelike boundary is explored."],["dc.identifier.doi","10.1007/s00220-008-0459-8"],["dc.identifier.isi","000262410900015"],["dc.identifier.ppn","589180924"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?goescholar/3089"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/17453"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.relation.issn","0010-3616"],["dc.relation.orgunit","Fakultät für Physik"],["dc.rights","Goescholar"],["dc.rights.access","openAccess"],["dc.rights.uri","https://goedoc.uni-goettingen.de/licenses"],["dc.subject.ddc","530"],["dc.title","How to Remove the Boundary in CFT - An Operator Algebraic Procedure"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI WOS