Now showing 1 - 8 of 8
  • 2007Journal Article
    [["dc.bibliographiccitation.firstpage","375"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Communications in Mathematical Physics"],["dc.bibliographiccitation.lastpage","385"],["dc.bibliographiccitation.volume","271"],["dc.contributor.author","Kawahigashi, Yasuyuki"],["dc.contributor.author","Longo, Roberto"],["dc.contributor.author","Pennig, Ulrich"],["dc.contributor.author","Rehren, Karl-Henning"],["dc.date.accessioned","2018-11-07T11:03:26Z"],["dc.date.available","2018-11-07T11:03:26Z"],["dc.date.issued","2007"],["dc.description.abstract","All non-local but relatively local irreducible extensions of Virasoro chiral CFTs with c < 1 are classified. The classification, which is a prerequisite for the classification of local c < 1 boundary CFTs on a two-dimensional half-space, turns out to be 1 to 1 with certain pairs of A-D-E graphs with distinguished vertices."],["dc.identifier.doi","10.1007/s00220-007-0199-1"],["dc.identifier.isi","000244677400002"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/51621"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.relation.issn","0010-3616"],["dc.title","The classification of non-local chiral CFT with c < 1"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2019Journal Article
    [["dc.bibliographiccitation.firstpage","2555"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Annales Henri Poincaré"],["dc.bibliographiccitation.lastpage","2584"],["dc.bibliographiccitation.volume","20"],["dc.contributor.author","Longo, Roberto"],["dc.contributor.author","Morinelli, Vincenzo"],["dc.contributor.author","Preta, Francesco"],["dc.contributor.author","Rehren, Karl-Henning"],["dc.date.accessioned","2020-12-10T14:07:53Z"],["dc.date.available","2020-12-10T14:07:53Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1007/s00023-019-00820-4"],["dc.identifier.eissn","1424-0661"],["dc.identifier.issn","1424-0637"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/70323"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Split Property for Free Massless Finite Helicity Fields"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2022Journal Article
    [["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Foundations of Physics"],["dc.bibliographiccitation.volume","52"],["dc.contributor.author","Buchholz, Detlev"],["dc.contributor.author","Longo, Roberto"],["dc.contributor.author","Rehren, Karl-Henning"],["dc.date.accessioned","2022-12-01T08:31:56Z"],["dc.date.available","2022-12-01T08:31:56Z"],["dc.date.issued","2022"],["dc.description.abstract","Abstract\n All causal Lie products of solutions of the Klein-Gordon equation and the wave equation in Minkowski space are determined. The results shed light on the origin of the algebraic structures underlying quantum field theory."],["dc.description.sponsorship"," Alexander von Humboldt-Stiftung http://dx.doi.org/10.13039/100005156"],["dc.description.sponsorship"," Georg-August-Universität Göttingen http://dx.doi.org/10.13039/501100003385"],["dc.identifier.doi","10.1007/s10701-022-00629-y"],["dc.identifier.pii","629"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/118310"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-621"],["dc.relation.eissn","1572-9516"],["dc.relation.issn","0015-9018"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Causal Lie Products of Free Fields and the Emergence of Quantum Field Theory"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2012Journal Article
    [["dc.bibliographiccitation.firstpage","769"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Communications in Mathematical Physics"],["dc.bibliographiccitation.lastpage","785"],["dc.bibliographiccitation.volume","311"],["dc.contributor.author","Longo, Roberto"],["dc.contributor.author","Rehren, Karl-Henning"],["dc.date.accessioned","2018-11-07T09:10:49Z"],["dc.date.available","2018-11-07T09:10:49Z"],["dc.date.issued","2012"],["dc.description.abstract","We construct local, boost covariant boundary QFT nets of von Neumann algebras on the interior of the Lorentz hyperboloid h(R), x(2) - t(2) > R-2, x > 0, in the two-dimensional Minkowski spacetime. Our first construction is canonical, starting with a local conformal net on R, and is analogous to our previous construction of local boundary CFT nets on the Minkowski half-space. This net is in a thermal state at Hawking temperature. Then, inspired by a recent construction by E. Witten and one of us, we consider a unitary semigroup that we use to build up infinitely many nets. Surprisingly, the one-particle semigroup is again isomorphic to the semigroup of symmetric inner functions of the disk. In particular, by considering the U(1)-current net, we can associate with any given symmetric inner function a local, boundary QFT net on h(R). By considering different states, we shall also have nets in a ground state, rather than in a KMS state."],["dc.identifier.doi","10.1007/s00220-011-1381-z"],["dc.identifier.fs","587230"],["dc.identifier.isi","000303449500008"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/8790"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/26578"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.relation.issn","0010-3616"],["dc.relation.orgunit","Fakultät für Physik"],["dc.rights","Goescholar"],["dc.rights.uri","https://goedoc.uni-goettingen.de/licenses"],["dc.title","Boundary Quantum Field Theory on the Interior of the Lorentz Hyperboloid"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2016Journal Article
    [["dc.bibliographiccitation.firstpage","587"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Communications in Mathematical Physics"],["dc.bibliographiccitation.lastpage","614"],["dc.bibliographiccitation.volume","345"],["dc.contributor.author","Longo, Roberto"],["dc.contributor.author","Morinelli, Vincenzo"],["dc.contributor.author","Rehren, Karl-Henning"],["dc.date.accessioned","2018-11-07T10:12:21Z"],["dc.date.available","2018-11-07T10:12:21Z"],["dc.date.issued","2016"],["dc.description.abstract","Particle states transforming in one of the infinite spin representations of the Poincar, group (as classified by E. Wigner) are consistent with fundamental physical principles, but local fields generating them from the vacuum state cannot exist. While it is known that infinite spin states localized in a spacelike cone are dense in the one-particle space, we show here that the subspace of states localized in any double cone is trivial. This implies that the free field theory associated with infinite spin has no observables localized in bounded regions. In an interacting theory, if the vacuum vector is cyclic for a double cone local algebra, then the theory does not contain infinite spin representations. We also prove that if a Doplicher-Haag-Roberts representation (localized in a double cone) of a local net is covariant under a unitary representation of the Poincar, group containing infinite spin, then it has infinite statistics. These results hold under the natural assumption of the Bisognano-Wichmann property, and we give a counter-example (with continuous particle degeneracy) without this property where the conclusions fail. Our results hold true in any spacetime dimension s + 1 where infinite spin representations exist, namely s >= 2."],["dc.identifier.doi","10.1007/s00220-015-2475-9"],["dc.identifier.isi","000378934300006"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/13421"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/40220"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/669240/EU//QUEST"],["dc.relation.issn","1432-0916"],["dc.relation.issn","0010-3616"],["dc.relation.orgunit","Fakultät für Physik"],["dc.rights","CC BY 4.0"],["dc.title","Where Infinite Spin Particles are Localizable"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2010Review
    [["dc.bibliographiccitation.firstpage","331"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Reviews in Mathematical Physics"],["dc.bibliographiccitation.lastpage","354"],["dc.bibliographiccitation.volume","22"],["dc.contributor.author","Longo, Roberto"],["dc.contributor.author","Martinetti, Pierre"],["dc.contributor.author","Rehren, Karl-Henning"],["dc.date.accessioned","2018-11-07T08:44:53Z"],["dc.date.available","2018-11-07T08:44:53Z"],["dc.date.issued","2010"],["dc.description.abstract","In suitable states, the modular group of local algebras associated with unions of disjoint intervals in chiral conformal quantum field theory acts geometrically. We translate this result into the setting of boundary conformal QFT and interpret it as a relation between temperature and acceleration. We also discuss novel aspects (\"mixing\" and \"charge splitting\") of geometric modular action for unions of disjoint intervals in the vacuum state."],["dc.identifier.doi","10.1142/S0129055X10003977"],["dc.identifier.isi","000276966900003"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/20296"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","World Scientific Publ Co Pte Ltd"],["dc.relation.issn","0129-055X"],["dc.title","GEOMETRIC MODULAR ACTION FOR DISJOINT INTERVALS AND BOUNDARY CONFORMAL FIELD THEORY"],["dc.type","review"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2009Journal Article
    [["dc.bibliographiccitation.firstpage","1165"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Communications in Mathematical Physics"],["dc.bibliographiccitation.lastpage","1182"],["dc.bibliographiccitation.volume","285"],["dc.contributor.author","Longo, Roberto"],["dc.contributor.author","Rehren, Karl-Henning"],["dc.date.accessioned","2018-11-07T08:32:56Z"],["dc.date.available","2018-11-07T08:32:56Z"],["dc.date.issued","2009"],["dc.description.abstract","The relation between two-dimensional conformal quantum field theories with and without a timelike boundary is explored."],["dc.identifier.doi","10.1007/s00220-008-0459-8"],["dc.identifier.isi","000262410900015"],["dc.identifier.ppn","589180924"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?goescholar/3089"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/17453"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.relation.issn","0010-3616"],["dc.relation.orgunit","Fakultät für Physik"],["dc.rights","Goescholar"],["dc.rights.access","openAccess"],["dc.rights.uri","https://goedoc.uni-goettingen.de/licenses"],["dc.subject.ddc","530"],["dc.title","How to Remove the Boundary in CFT - An Operator Algebraic Procedure"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2016Journal Article
    [["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Communications in Mathematical Physics"],["dc.bibliographiccitation.lastpage","45"],["dc.bibliographiccitation.volume","342"],["dc.contributor.author","Bischoff, Marcel"],["dc.contributor.author","Kawahigashi, Yasuyuki"],["dc.contributor.author","Longo, Roberto"],["dc.contributor.author","Rehren, Karl-Henning"],["dc.date.accessioned","2018-11-07T10:18:42Z"],["dc.date.available","2018-11-07T10:18:42Z"],["dc.date.issued","2016"],["dc.description.abstract","We study the structure of local algebras in relativistic conformal quantum field theory with phase boundaries. Phase boundaries are instances of a more general notion of boundaries that give rise to a variety of algebraic structures. These can be formulated in a common framework originating in Algebraic QFT, with the principle of Einstein Causality playing a prominent role. We classify the phase boundary conditions by the centre of a certain universal construction, which produces a reducible representation in which all possible boundary conditions are realized. For a large class of models, the classification reproduces results obtained in a different approach by Fuchs et al. before."],["dc.identifier.doi","10.1007/s00220-015-2560-0"],["dc.identifier.isi","000369965600001"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/41501"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.relation.issn","1432-0916"],["dc.relation.issn","0010-3616"],["dc.title","Phase Boundaries in Algebraic Conformal QFT"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI WOS