Options
Kaasalainen, Ulla Susanna
Loading...
Preferred name
Kaasalainen, Ulla Susanna
Official Name
Kaasalainen, Ulla Susanna
Alternative Name
Kaasalainen, Ulla S.
Kaasalainen, U.S.
Kaasalainen, Ulla
Kaasalainen, U.
Main Affiliation
Now showing 1 - 6 of 6
2015Journal Article [["dc.bibliographiccitation.artnumber","e0129526"],["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","PLoS ONE"],["dc.bibliographiccitation.lastpage","12"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Kaasalainen, Ulla"],["dc.contributor.author","Heinrichs, Jochen"],["dc.contributor.author","Krings, Michael"],["dc.contributor.author","Myllys, Leena"],["dc.contributor.author","Grabenhorst, Heinrich"],["dc.contributor.author","Rikkinen, Jouko"],["dc.contributor.author","Schmidt, Alexander R."],["dc.date.accessioned","2018-11-07T09:55:56Z"],["dc.date.available","2018-11-07T09:55:56Z"],["dc.date.issued","2015"],["dc.description.abstract","One of the most important issues in molecular dating studies concerns the incorporation of reliable fossil taxa into the phylogenies reconstructed from DNA sequence variation in extant taxa. Lichens are symbiotic associations between fungi and algae and/or cyanobacteria. Several lichen fossils have been used as minimum age constraints in recent studies concerning the diversification of the Ascomycota. Recent evolutionary studies of Lecanoromycetes, an almost exclusively lichen-forming class in the Ascomycota, have utilized the Eocene amber inclusion Alectoria succinic as a minimum age constraint. However, a re-investigation of the type material revealed that this inclusion in fact represents poorly preserved plant remains, most probably of a root. Consequently, this fossil cannot be used as evidence of the presence of the genus Alectoria (Parmeliaceae, Lecanorales) or any other lichens in the Paleogene. However, newly discovered inclusions from Paleogene Baltic and Bitterfeld amber verify that alectorioid morphologies in lichens were in existence by the Paleogene. The new fossils represent either a lineage within the alectorioid group or belong to the genus Oropogon."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2015"],["dc.identifier.doi","10.1371/journal.pone.0129526"],["dc.identifier.isi","000355955300138"],["dc.identifier.pmid","26053106"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/11959"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/36860"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","Najko"],["dc.relation.issn","1932-6203"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0/"],["dc.title","Alectorioid Morphologies in Paleogene Lichens: New Evidence and Re-Evaluation of the Fossil Alectoria succini Magdefrau"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2019Journal Article [["dc.bibliographiccitation.firstpage","10360"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Scientific Reports"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Kaasalainen, Ulla"],["dc.contributor.author","Kukwa, Martin"],["dc.contributor.author","Rikkinen, Jouko"],["dc.contributor.author","Schmidt, Alexander R."],["dc.date.accessioned","2019-07-22T10:02:45Z"],["dc.date.available","2019-07-22T10:02:45Z"],["dc.date.issued","2019"],["dc.description.abstract","Lichens, symbiotic consortia of lichen-forming fungi and their photosynthetic partners have long had an extremely poor fossil record. However, recently over 150 new lichens were identified from European Paleogene amber and here we analyse crustose lichens from the new material. Three fossil lichens belong to the extant genus Ochrolechia (Ochrolechiaceae, Lecanoromycetes) and one fossil has conidiomata similar to those produced by modern fungi of the order Arthoniales (Arthoniomycetes). Intriguingly, two fossil Ochrolechia specimens host lichenicolous fungi of the genus Lichenostigma (Lichenostigmatales, Arthoniomycetes). This confirms that both Ochrolechia and Lichenostigma already diversified in the Paleogene and demonstrates that also the specific association between the fungi had evolved by then. The new fossils provide a minimum age constraint for both genera at 34 million years (uppermost Eocene)."],["dc.identifier.doi","10.1038/s41598-019-46692-w"],["dc.identifier.pmid","31316089"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16287"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/61781"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.eissn","2045-2322"],["dc.relation.issn","2045-2322"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Crustose lichens with lichenicolous fungi from Paleogene amber"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2015Journal Article [["dc.bibliographiccitation.firstpage","127"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","FOSSIL RECORD"],["dc.bibliographiccitation.lastpage","135"],["dc.bibliographiccitation.volume","18"],["dc.contributor.author","Hartl, C."],["dc.contributor.author","Schmidt, A. R."],["dc.contributor.author","Heinrichs, Jochen"],["dc.contributor.author","Seyfullah, Leyla J."],["dc.contributor.author","Schaefer, N."],["dc.contributor.author","Groehn, Carsten"],["dc.contributor.author","Rikkinen, Jouko"],["dc.contributor.author","Kaasalainen, Ulla"],["dc.date.accessioned","2018-11-07T10:02:30Z"],["dc.date.available","2018-11-07T10:02:30Z"],["dc.date.issued","2015"],["dc.description.abstract","The fossil record of lichens is scarce and many putative fossil lichens do not show an actual physiological relationship between mycobionts and photobionts or a typical habit, and are therefore disputed. Amber has preserved a huge variety of organisms in microscopic fidelity, and so the study of amber fossils is promising for elucidating the fossil history of lichens. However, so far it has not been tested as to how amber inclusions of lichens are preserved regarding their internal characters, ultrastructure, and chemofossils. Here, we apply light microscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and Raman spectroscopy to an amber-preserved Eocene lichen in order to gain information about the preservation of the fossil. The lichen thallus displays lifelike tissue preservation including the upper and lower cortex, medulla, photobiont layer, apothecia, and soredia. SEM analysis revealed globular photobiont cells in contact with the fungal hyphae, as well as impressions of possible former crystals of lichen compounds. EDX analysis permitted the differentiation between halite and pyrite crystals inside the lichen which were likely formed during the later diagenesis of the amber piece. Raman spectroscopy revealed the preservation of organic compounds and a difference between the composition of the cortex and the medulla of the fossil."],["dc.description.sponsorship","Alexander von Humboldt Foundation"],["dc.identifier.doi","10.5194/fr-18-127-2015"],["dc.identifier.isi","000371181900004"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/12566"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/38236"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Copernicus Gesellschaft Mbh"],["dc.relation.issn","2193-0074"],["dc.relation.issn","2193-0066"],["dc.rights","CC BY 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/3.0/"],["dc.title","Lichen preservation in amber: morphology, ultrastructure, chemofossils, and taphonomic alteration"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI WOS2015Journal Article [["dc.bibliographiccitation.artnumber","e0131223"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","PLoS ONE"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Kaasalainen, Ulla"],["dc.contributor.author","Olsson, Sanna"],["dc.contributor.author","Rikkinen, Jouko"],["dc.date.accessioned","2018-11-07T09:55:44Z"],["dc.date.available","2018-11-07T09:55:44Z"],["dc.date.issued","2015"],["dc.description.abstract","The group I intron interrupting the tRNALeu UAA gene (trnL) is present in most cyanobacterial genomes as well as in the plastids of many eukaryotic algae and all green plants. In lichen symbiotic Nostoc, the P6b stem-loop of trnL intron always involves one of two different repeat motifs, either Class I or Class II, both with unresolved evolutionary histories. Here we attempt to resolve the complex evolution of the two different trnL P6b region types. Our analysis indicates that the Class II repeat motif most likely appeared first and that independent and unidirectional shifts to the Class I motif have since taken place repeatedly. In addition, we compare our results with those obtained with other genetic markers and find strong evidence of recombination in the 16S rRNA gene, a marker widely used in phylogenetic studies on Bacteria. The congruence of the different genetic markers is successfully evaluated with the recently published software Saguaro, which has not previously been utilized in comparable studies."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2015"],["dc.identifier.doi","10.1371/journal.pone.0131223"],["dc.identifier.isi","000356835800159"],["dc.identifier.pmid","26098760"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/11953"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/36815"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Public Library Science"],["dc.relation.issn","1932-6203"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0/"],["dc.title","Evolution of the tRNA(Leu) (UAA) Intron and Congruence of Genetic Markers in Lichen-Symbiotic Nostoc"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2021Journal Article [["dc.bibliographiccitation.journal","Frontiers in Microbiology"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Kaasalainen, Ulla"],["dc.contributor.author","Tuovinen, Veera"],["dc.contributor.author","Mwachala, Geoffrey"],["dc.contributor.author","Pellikka, Petri"],["dc.contributor.author","Rikkinen, Jouko"],["dc.date.accessioned","2021-07-05T14:57:54Z"],["dc.date.available","2021-07-05T14:57:54Z"],["dc.date.issued","2021"],["dc.description.abstract","Interactions within lichen communities include, in addition to close mutualistic associations between the main partners of specific lichen symbioses, also more elusive relationships between members of a wider symbiotic community. Here, we analyze association patterns of cyanolichen symbionts in the tropical montane forests of Taita Hills, southern Kenya, which is part of the Eastern Afromontane biodiversity hotspot. The cyanolichen specimens analyzed represent 74 mycobiont taxa within the order Peltigerales (Ascomycota), associating with 115 different variants of the photobionts genus Nostoc (Cyanobacteria). Our analysis demonstrates wide sharing of photobionts and reveals the presence of several photobiont-mediated lichen guilds. Over half of all mycobionts share photobionts with other fungal species, often from different genera or even families, while some others are strict specialists and exclusively associate with a single photobiont variant. The most extensive symbiont network involves 24 different fungal species from five genera associating with 38 Nostoc photobionts. The Nostoc photobionts belong to two main groups, the Nephroma -type Nostoc and the Collema / Peltigera -type Nostoc , and nearly all mycobionts associate only with variants of one group. Among the mycobionts, species that produce cephalodia and those without symbiotic propagules tend to be most promiscuous in photobiont choice. The extent of photobiont sharing and the structure of interaction networks differ dramatically between the two major photobiont-mediated guilds, being both more prevalent and nested among Nephroma guild fungi and more compartmentalized among Peltigera guild fungi. This presumably reflects differences in the ecological characteristics and/or requirements of the two main groups of photobionts. The same two groups of Nostoc have previously been identified from many lichens in various lichen-rich ecosystems in different parts of the world, indicating that photobiont sharing between fungal species is an integral part of lichen ecology globally. In many cases, symbiotically dispersing lichens can facilitate the dispersal of sexually reproducing species, promoting establishment and adaptation into new and marginal habitats and thus driving evolutionary diversification."],["dc.description.abstract","Interactions within lichen communities include, in addition to close mutualistic associations between the main partners of specific lichen symbioses, also more elusive relationships between members of a wider symbiotic community. Here, we analyze association patterns of cyanolichen symbionts in the tropical montane forests of Taita Hills, southern Kenya, which is part of the Eastern Afromontane biodiversity hotspot. The cyanolichen specimens analyzed represent 74 mycobiont taxa within the order Peltigerales (Ascomycota), associating with 115 different variants of the photobionts genus Nostoc (Cyanobacteria). Our analysis demonstrates wide sharing of photobionts and reveals the presence of several photobiont-mediated lichen guilds. Over half of all mycobionts share photobionts with other fungal species, often from different genera or even families, while some others are strict specialists and exclusively associate with a single photobiont variant. The most extensive symbiont network involves 24 different fungal species from five genera associating with 38 Nostoc photobionts. The Nostoc photobionts belong to two main groups, the Nephroma -type Nostoc and the Collema / Peltigera -type Nostoc , and nearly all mycobionts associate only with variants of one group. Among the mycobionts, species that produce cephalodia and those without symbiotic propagules tend to be most promiscuous in photobiont choice. The extent of photobiont sharing and the structure of interaction networks differ dramatically between the two major photobiont-mediated guilds, being both more prevalent and nested among Nephroma guild fungi and more compartmentalized among Peltigera guild fungi. This presumably reflects differences in the ecological characteristics and/or requirements of the two main groups of photobionts. The same two groups of Nostoc have previously been identified from many lichens in various lichen-rich ecosystems in different parts of the world, indicating that photobiont sharing between fungal species is an integral part of lichen ecology globally. In many cases, symbiotically dispersing lichens can facilitate the dispersal of sexually reproducing species, promoting establishment and adaptation into new and marginal habitats and thus driving evolutionary diversification."],["dc.identifier.doi","10.3389/fmicb.2021.672333"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/87767"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-441"],["dc.publisher","Frontiers Media S.A."],["dc.relation.eissn","1664-302X"],["dc.rights","http://creativecommons.org/licenses/by/4.0/"],["dc.title","Complex Interaction Networks Among Cyanolichens of a Tropical Biodiversity Hotspot"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2021Journal Article [["dc.bibliographiccitation.firstpage","314"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Microorganisms"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Kaasalainen, Ulla"],["dc.contributor.author","Tuovinen, Veera"],["dc.contributor.author","Kirika, Paul M."],["dc.contributor.author","Mollel, Neduvoto P."],["dc.contributor.author","Hemp, Andreas"],["dc.contributor.author","Rikkinen, Jouko"],["dc.date.accessioned","2021-04-14T08:27:53Z"],["dc.date.available","2021-04-14T08:27:53Z"],["dc.date.issued","2021"],["dc.description.sponsorship","Deutsche Forschungsgemeinschaft"],["dc.description.sponsorship","H2020 Marie Skłodowska-Curie Actions"],["dc.identifier.doi","10.3390/microorganisms9020314"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/82440"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.publisher","MDPI"],["dc.relation.eissn","2076-2607"],["dc.rights","https://creativecommons.org/licenses/by/4.0/"],["dc.title","Diversity of Leptogium (Collemataceae, Ascomycota) in East African Montane Ecosystems"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI